21,316 research outputs found
On the Fourier transform of the characteristic functions of domains with -smooth boundary
We consider domains with -smooth boundary and
study the following question: when the Fourier transform of the
characteristic function belongs to ?Comment: added two references; added footnotes on pages 6 and 1
Large fluctuations and irreversibility in nonequilibrium systems.
Large rare fluctuations in a nonequilibrium system are investigated theoretically and by analogue electronic experiment. It is emphasized that the optimal paths calculated via the eikonal approximation of the Fokker-Planck equation can be identified with the locus of the ridges of the prehistory probability distributions which can be calculated and measured experimentally for paths terminating at a given final point in configuration sspace. The pattern of optimal paths and its singularities, such as caustics, cusps and switching lines has been calculated and measured experimentally for a periodically driven overdamped oscillator, yielding results that are shown to be in good agreement with each other
Asymptotic Exit Location Distributions in the Stochastic Exit Problem
Consider a two-dimensional continuous-time dynamical system, with an
attracting fixed point . If the deterministic dynamics are perturbed by
white noise (random perturbations) of strength , the system state
will eventually leave the domain of attraction of . We analyse the
case when, as , the exit location on the boundary
is increasingly concentrated near a saddle point of the
deterministic dynamics. We show that the asymptotic form of the exit location
distribution on is generically non-Gaussian and asymmetric,
and classify the possible limiting distributions. A key role is played by a
parameter , equal to the ratio of the stable
and unstable eigenvalues of the linearized deterministic flow at . If
then the exit location distribution is generically asymptotic as
to a Weibull distribution with shape parameter , on the
length scale near . If it is generically
asymptotic to a distribution on the length scale, whose
moments we compute. The asymmetry of the asymptotic exit location distribution
is attributable to the generic presence of a `classically forbidden' region: a
wedge-shaped subset of with as vertex, which is reached from ,
in the limit, only via `bent' (non-smooth) fluctuational paths
that first pass through the vicinity of . We deduce from the presence of
this forbidden region that the classical Eyring formula for the
small- exponential asymptotics of the mean first exit time is
generically inapplicable.Comment: This is a 72-page Postscript file, about 600K in length. Hardcopy
requests to [email protected] or [email protected]
A phase transition in a system driven by coloured noise
For a system driven by coloured noise, we investigate the activation energy of escape, and the dynamics during the escape. We have performed analogue experiments to measure the change in activation energy as the power spectrum of the noise varies. An adiabatic approach based on path integral theory allows us to calculate analytically the critical value at which a phase transition in the activation energy occurs
The Order of Phase Transitions in Barrier Crossing
A spatially extended classical system with metastable states subject to weak
spatiotemporal noise can exhibit a transition in its activation behavior when
one or more external parameters are varied. Depending on the potential, the
transition can be first or second-order, but there exists no systematic theory
of the relation between the order of the transition and the shape of the
potential barrier. In this paper, we address that question in detail for a
general class of systems whose order parameter is describable by a classical
field that can vary both in space and time, and whose zero-noise dynamics are
governed by a smooth polynomial potential. We show that a quartic potential
barrier can only have second-order transitions, confirming an earlier
conjecture [1]. We then derive, through a combination of analytical and
numerical arguments, both necessary conditions and sufficient conditions to
have a first-order vs. a second-order transition in noise-induced activation
behavior, for a large class of systems with smooth polynomial potentials of
arbitrary order. We find in particular that the order of the transition is
especially sensitive to the potential behavior near the top of the barrier.Comment: 8 pages, 6 figures with extended introduction and discussion; version
accepted for publication by Phys. Rev.
- …