21,316 research outputs found

    On the Fourier transform of the characteristic functions of domains with C1C^1 -smooth boundary

    Full text link
    We consider domains DRnD\subseteq\mathbb R^n with C1C^1 -smooth boundary and study the following question: when the Fourier transform 1D^\hat{1_D} of the characteristic function 1D1_D belongs to Lp(Rn)L^p(\mathbb R^n)?Comment: added two references; added footnotes on pages 6 and 1

    Large fluctuations and irreversibility in nonequilibrium systems.

    Get PDF
    Large rare fluctuations in a nonequilibrium system are investigated theoretically and by analogue electronic experiment. It is emphasized that the optimal paths calculated via the eikonal approximation of the Fokker-Planck equation can be identified with the locus of the ridges of the prehistory probability distributions which can be calculated and measured experimentally for paths terminating at a given final point in configuration sspace. The pattern of optimal paths and its singularities, such as caustics, cusps and switching lines has been calculated and measured experimentally for a periodically driven overdamped oscillator, yielding results that are shown to be in good agreement with each other

    Asymptotic Exit Location Distributions in the Stochastic Exit Problem

    Full text link
    Consider a two-dimensional continuous-time dynamical system, with an attracting fixed point SS. If the deterministic dynamics are perturbed by white noise (random perturbations) of strength ϵ\epsilon, the system state will eventually leave the domain of attraction Ω\Omega of SS. We analyse the case when, as ϵ0\epsilon\to0, the exit location on the boundary Ω\partial\Omega is increasingly concentrated near a saddle point HH of the deterministic dynamics. We show that the asymptotic form of the exit location distribution on Ω\partial\Omega is generically non-Gaussian and asymmetric, and classify the possible limiting distributions. A key role is played by a parameter μ\mu, equal to the ratio λs(H)/λu(H)|\lambda_s(H)|/\lambda_u(H) of the stable and unstable eigenvalues of the linearized deterministic flow at HH. If μ<1\mu<1 then the exit location distribution is generically asymptotic as ϵ0\epsilon\to0 to a Weibull distribution with shape parameter 2/μ2/\mu, on the O(ϵμ/2)O(\epsilon^{\mu/2}) length scale near HH. If μ>1\mu>1 it is generically asymptotic to a distribution on the O(ϵ1/2)O(\epsilon^{1/2}) length scale, whose moments we compute. The asymmetry of the asymptotic exit location distribution is attributable to the generic presence of a `classically forbidden' region: a wedge-shaped subset of Ω\Omega with HH as vertex, which is reached from SS, in the ϵ0\epsilon\to0 limit, only via `bent' (non-smooth) fluctuational paths that first pass through the vicinity of HH. We deduce from the presence of this forbidden region that the classical Eyring formula for the small-ϵ\epsilon exponential asymptotics of the mean first exit time is generically inapplicable.Comment: This is a 72-page Postscript file, about 600K in length. Hardcopy requests to [email protected] or [email protected]

    A phase transition in a system driven by coloured noise

    Get PDF
    For a system driven by coloured noise, we investigate the activation energy of escape, and the dynamics during the escape. We have performed analogue experiments to measure the change in activation energy as the power spectrum of the noise varies. An adiabatic approach based on path integral theory allows us to calculate analytically the critical value at which a phase transition in the activation energy occurs

    The Order of Phase Transitions in Barrier Crossing

    Full text link
    A spatially extended classical system with metastable states subject to weak spatiotemporal noise can exhibit a transition in its activation behavior when one or more external parameters are varied. Depending on the potential, the transition can be first or second-order, but there exists no systematic theory of the relation between the order of the transition and the shape of the potential barrier. In this paper, we address that question in detail for a general class of systems whose order parameter is describable by a classical field that can vary both in space and time, and whose zero-noise dynamics are governed by a smooth polynomial potential. We show that a quartic potential barrier can only have second-order transitions, confirming an earlier conjecture [1]. We then derive, through a combination of analytical and numerical arguments, both necessary conditions and sufficient conditions to have a first-order vs. a second-order transition in noise-induced activation behavior, for a large class of systems with smooth polynomial potentials of arbitrary order. We find in particular that the order of the transition is especially sensitive to the potential behavior near the top of the barrier.Comment: 8 pages, 6 figures with extended introduction and discussion; version accepted for publication by Phys. Rev.
    corecore