25,140 research outputs found

    NLO Corrections to Deeply-Virtual Compton Scattering

    Full text link
    We have calculated the NLO corrections to the twist-2 part of the deeply-virtual Compton scattering amplitude. Our results for the transverse and antisymmetric parts agree with recent calculations by Ji and Osborne and by Belitsky and M\"uller. In addition we present NLO results for the longitudinal part of the amplitude.Comment: 8 pages, Latex. Error in polarised gluonic coefficient in Eq.(8) correcte

    Generalization of the effective Wiener-Ikehara theorem

    Get PDF
    International audienceWe consider the classical Wiener–Ikehara Tauberian theorem, with a generalized condition of slow decrease and some additional poles on the boundary of convergence of the Laplace transform. In this generality, we prove the otherwise known asymptotic evaluation of the transformed function, when the usual conditions of the Wiener-Ikehara theorem hold. However, our version also provides an effective error term, not known thus far in this generality. The crux of the proof is a proper asymptotic variation of the lemmas of Ganelius and Tenenbaum, also constructed for the sake of an effective version of the Wiener–Ikehara theorem

    On a fourth order nonlinear Helmholtz equation

    Get PDF
    In this paper, we study the mixed dispersion fourth order nonlinear Helmholtz equation Δ2u−ÎČΔu+αu=Γ∣u∣p−2u\Delta^2 u -\beta \Delta u + \alpha u= \Gamma|u|^{p-2} u in RN\mathbb R^N for positive, bounded and ZN\mathbb Z^N-periodic functions Γ\Gamma. Using the dual method of Evequoz and Weth, we find solutions to this equation and establish some of their qualitative properties

    Whitney coverings and the tent spaces T1,q(Îł)T^{1,q}(\gamma) for the Gaussian measure

    Full text link
    We introduce a technique for handling Whitney decompositions in Gaussian harmonic analysis and apply it to the study of Gaussian analogues of the classical tent spaces T1,qT^{1,q} of Coifman, Meyer and Stein.Comment: 13 pages, 1 figure. Revised version incorporating referee's comments. To appear in Arkiv for Matemati

    Magnetohydrodynamic turbulence in warped accretion discs

    Get PDF
    Warped, precessing accretion discs appear in a range of astrophysical systems, for instance the X-ray binary Her X-1 and in the active nucleus of NGC4258. In a warped accretion disc there are horizontal pressure gradients that drive an epicyclic motion. We have studied the interaction of this epicyclic motion with the magnetohydrodynamic turbulence in numerical simulations. We find that the turbulent stress acting on the epicyclic motion is comparable in size to the stress that drives the accretion, however an important ingredient in the damping of the epicyclic motion is its parametric decay into inertial waves.Comment: to appear in the proceedings of the 20th Texas Symposium on Relativistic Astrophysics, J. C. Wheeler & H. Martel (eds.

    The response of a turbulent accretion disc to an imposed epicyclic shearing motion

    Get PDF
    We excite an epicyclic motion, whose amplitude depends on the vertical position, zz, in a simulation of a turbulent accretion disc. An epicyclic motion of this kind may be caused by a warping of the disc. By studying how the epicyclic motion decays we can obtain information about the interaction between the warp and the disc turbulence. A high amplitude epicyclic motion decays first by exciting inertial waves through a parametric instability, but its subsequent exponential damping may be reproduced by a turbulent viscosity. We estimate the effective viscosity parameter, αv\alpha_{\rm v}, pertaining to such a vertical shear. We also gain new information on the properties of the disc turbulence in general, and measure the usual viscosity parameter, αh\alpha_{\rm h}, pertaining to a horizontal (Keplerian) shear. We find that, as is often assumed in theoretical studies, αv\alpha_{\rm v} is approximately equal to αh\alpha_{\rm h} and both are much less than unity, for the field strengths achieved in our local box calculations of turbulence. In view of the smallness (∌0.01\sim 0.01) of αv\alpha_{\rm v} and αh\alpha_{\rm h} we conclude that for ÎČ=pgas/pmag∌10\beta = p_{\rm gas}/p_{\rm mag} \sim 10 the timescale for diffusion or damping of a warp is much shorter than the usual viscous timescale. Finally, we review the astrophysical implications.Comment: 12 pages, 18 figures, MNRAS accepte

    Large fluctuations and irreversibility in nonequilibrium systems.

    Get PDF
    Large rare fluctuations in a nonequilibrium system are investigated theoretically and by analogue electronic experiment. It is emphasized that the optimal paths calculated via the eikonal approximation of the Fokker-Planck equation can be identified with the locus of the ridges of the prehistory probability distributions which can be calculated and measured experimentally for paths terminating at a given final point in configuration sspace. The pattern of optimal paths and its singularities, such as caustics, cusps and switching lines has been calculated and measured experimentally for a periodically driven overdamped oscillator, yielding results that are shown to be in good agreement with each other

    Effects of jamming on non-equilibrium transport times in nano-channels

    Full text link
    Many biological channels perform highly selective transport without direct input of metabolic energy and without transitions from a 'closed' to an 'open' state during transport. Mechanisms of selectivity of such channels serve as an inspiration for creation of artificial nano-molecular sorting devices and bio-sensors. To elucidate the transport mechanisms, it is important to understand the transport on the single molecule level in the experimentally relevant regime when multiple particles are crowded in the channel. In this paper we analyze the effects of inter-particle crowding on the non-equilibrium transport times through a finite-length channel by means of analytical theory and computer simulations

    Applicability of Modified Effective-Range Theory to positron-atom and positron-molecule scattering

    Get PDF
    We analyze low-energy scattering of positrons on Ar atoms and N2 molecules using Modified Effective-Range Theory (MERT) developped by O'Malley, Spruch and Rosenberg [Journal of Math. Phys. 2, 491 (1961)]. We use formulation of MERT based on exact solutions of Schroedinger equation with polarization potential rather than low-energy expansions of phase shifts into momentum series. We show that MERT describes well experimental data, provided that effective-range expansion is performed both for s- and p-wave scattering, which dominate in the considered regime of positron energies (0.4 - 2 eV). We estimate the values of the s-wave scattering lenght and the effective range for e+ - Ar and e+ - N2 collisions.Comment: RevTeX, 4 pages, 2 figure

    The Convective Urca Process with Implicit Two-Dimensional Hydrodynamics

    Full text link
    Consideration of the role of the convective flux in the thermodymics of the convective Urca neutrino loss process in degenerate, convective, quasi-static, carbon-burning cores shows that the convective Urca process slows down the convective current around the Urca-shell, but, unlike the "thermal" Urca process, does not reduce the entropy or temperature for a given convective volume. Here we demonstrate these effects with two-dimensional numerical hydrodynamical calculations. These two-dimensional implicit hydrodynamics calculations invoke an artificial speeding up of the nuclear and weak rates. They should thus be regarded as indicative, but still qualitative. We find that, compared to a case with no Urca-active nuclei, the case with Urca effects leads to a higher entropy in the convective core because the energy released by nuclear burning is confined to a smaller volume by the effective boundary at the Urca shell. All else being equal, this will tend to accelerate the progression to dynamical runaway. We discuss the open issues regarding the impact of the convective Urca process on the evolution to the "smoldering phase" and then to dynamical runaway.Comment: 22 pages, 11 figures, accepted for publication in the Astrophysical Journa
    • 

    corecore