21,470 research outputs found
Magnetic correlations of the quasi-one-dimensional half-integer spin-chain antiferromagnets SrVO ( = Co, Mn)
Magnetic correlations of two iso-structural quasi-one-dimensional (1D)
antiferromagnetic spin-chain compounds SrVO ( = Co, Mn) have
been investigated by magnetization and powder neutron diffraction. Two
different collinear antiferromagnetic (AFM) structures, characterized by the
propagation vectors, = (0 0 1) and = (0 0 0), have been found below
5.2 K and 42.2 K for the Co- and Mn-compounds, respectively. For
the Mn-compound, AFM chains (along the axis) order ferromagnetically within
the plane, whereas, for the Co-compound, AFM chains order
ferro-/antiferromagnetically along the direction. The critical exponent
study confirms that the Co- and Mn-compounds belong to the Ising and Heisenberg
universality classes, respectively. For both compounds, short-range spin-spin
correlations are present over a wide temperature range above . The reduced
ordered moments at base temperature (1.5 K) indicate the presence of quantum
fluctuations in both compounds due to the quasi-1D magnetic interactions.Comment: 14 pages, 10 figures, 9 table
Scanner observations of selected cool stars
Photoelectric spectral scans at 30-A resolution of 9 dwarfs, 10 giants and 6 supergiants with spectral types GO to M5 were presented. All stars were observed every 4 A from wavelength 3300 to wavelength 7000. Absorption features at this resolution coincide with: strong atomic lines of Fe 1,11, Ca 1,11, Mg 1, and Na 1; vibrational bands of the electronic transitions of TiO, MgH, CaH, SiH, AlH, Cn, Ch, C2, OH, and NH. The dependence of the wavelength 3740 Fe 1 blend and the wavelength 3440 depression on temperature is discussed
Adjointness Relations as a Criterion for Choosing an Inner Product
This is a contribution to the forthcoming book "Canonical Gravity: {}From
Classical to Quantum" edited by J. Ehlers and H. Friedrich. Ashtekar's
criterion for choosing an inner product in the quantisation of constrained
systems is discussed. An erroneous claim in a previous paper is corrected and a
cautionary example is presented.Comment: 6 pages, MPA-AR-94-
Realistic Magnetohydrodynamical Simulation of Solar Local Supergranulation
Three-dimensional numerical simulations of solar surface magnetoconvection
using realistic model physics are conducted. The thermal structure of
convective motions into the upper radiative layers of the photosphere, the main
scales of convective cells and the penetration depths of convection are
investigated. We take part of the solar photosphere with size of 60x60 Mm in
horizontal direction and by depth 20 Mm from level of the visible solar
surface. We use a realistic initial model of the Sun and apply equation of
state and opacities of stellar matter. The equations of fully compressible
radiation magnetohydrodynamics with dynamical viscosity and gravity are solved.
We apply: 1) conservative TVD difference scheme for the magnetohydrodynamics,
2) the diffusion approximation for the radiative transfer, 3) dynamical
viscosity from subgrid scale modeling. In simulation we take uniform
two-dimesional grid in gorizontal plane and nonuniform grid in vertical
direction with number of cells 600x600x204. We use 512 processors with
distributed memory multiprocessors on supercomputer MVS-100k in the Joint
Computational Centre of the Russian Academy of Sciences.Comment: 6 pages, 5 figures, submitted to the proceedings of the GONG 2008 /
SOHO XXI conferenc
Polarization and Charge Transfer in the Hydration of Chloride Ions
A theoretical study of the structural and electronic properties of the
chloride ion and water molecules in the first hydration shell is presented. The
calculations are performed on an ensemble of configurations obtained from
molecular dynamics simulations of a single chloride ion in bulk water. The
simulations utilize the polarizable AMOEBA force field for trajectory
generation, and MP2-level calculations are performed to examine the electronic
structure properties of the ions and surrounding waters in the external field
of more distant waters. The ChelpG method is employed to explore the effective
charges and dipoles on the chloride ions and first-shell waters. The Quantum
Theory of Atoms in Molecules (QTAIM) is further utilized to examine charge
transfer from the anion to surrounding water molecules.
From the QTAIM analysis, 0.2 elementary charges are transferred from the ion
to the first-shell water molecules. The default AMOEBA model overestimates the
average dipole moment magnitude of the ion compared with the estimated quantum
mechanical value. The average magnitude of the dipole moment of the water
molecules in the first shell treated at the MP2 level, with the more distant
waters handled with an AMOEBA effective charge model, is 2.67 D. This value is
close to the AMOEBA result for first-shell waters (2.72 D) and is slightly
reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment
of the water molecules in the first solvation shell is most strongly affected
by the local water-water interactions and hydrogen bonds with the second
solvation shell, rather than by interactions with the ion.Comment: Slight revision, in press at J. Chem. Phy
Spin Susceptibility of a 2D Electron System in GaAs towards the Weak Interaction Region
We determine the spin susceptibility in the weak interaction regime of
a tunable, high quality, two-dimensional electron system in a GaAs/AlGaAs
heterostructure. The band structure effects, modifying mass and g-factor, are
carefully taken into accounts since they become appreciable for the large
electron densities of the weak interaction regime. When properly normalized,
decreases monotonically from 3 to 1.1 with increasing density over our
experimental range from 0.1 to . In the high density
limit, tends correctly towards and compare well with recent
theory.Comment: Submitted to Physical Review
- …