97 research outputs found
Optical beam guidance in monolithic polymer chips for miniaturized colorimetric assays
For the first time, we present a simple and robust optical concept to enable precise and sensitive read-out of colorimetric assays in flat lab-on-a-chip devices. The optical guidance of the probe beam through an incorporated measurement chamber to the detector is based on the total internal reflection at V-grooves in the polymer chip. This way, the optical path length through the flat measurement chamber and thus the performance of the measurements are massively enhanced compared to direct (perpendicular) beam incidence. This is demonstrated by a chip-based, colorimetric glucose-assay on serum. Outstanding features are an excellent reproducibility (CV= 1.91 %), a competitive lower limit of detection (cmin = 124 μM), and a high degree of linearity (R2 = 0.998) within a working range extending over nearly three orders of magnitude
Junction formation by Zn(O,S) sputtering yields CIGSe-based cells with efficiencies exceeding 18%
In an effort to reduce the complexity and associated production costs of
Cu(In,Ga)Se2 (CIGSe)-based solar cells, the commonly used sputtered undoped
ZnO layer has been modified to eliminate the requirement for a dedicated
buffer layer. After replacing the ZnO target with a mixed ZnO/ZnS target,
efficient solar cells could be prepared by sputtering directly onto the as-
grown CIGSe surface. This approach has now been tested with high-quality lab-
scale glass/Mo/CIGSe substrates. An efficiency of 18.3% has been independently
confirmed without any post-deposition annealing or light soaking
Investigation of Cu poor and Cu rich Cu In,Ga Se2 CdS interfaces using hard X ray photoelectron spectroscopy
Cu poor and Cu rich Cu In,Ga Se2 CIGSe absorbers were used as substrates for the chemical bath deposition of ultrathin CdS buffer layers in the thickness range of a few nanometers in order to make the CIGSe CdS interface accessible by hard X ray photo emission spectroscopy. The composition of both, the absorber and the buffer layer as well as the energetics of the interface was investigated at room temperature and after heating the samples to elevated temperatures 200 C, 300 C and 400 C . It was found that the amount of Cd after the heating treatment depends on the near surface composition of the CIGSe absorber. No Cd was detected on the Cu poor surface after the 400 C treatment due to its diffusion into the CIGSe layer. In contrast, Cd was still present on the Cu rich surface after the same treatment at 400
Cu2ZnSnS4 thin film solar cells grown by fast thermal evaporation and thermal treatment
Cu2ZnSnS4 thin films have been produced via rapid thermal evaporation of off-stoichiometric kesterite powder followed by annealing in an Ar atmosphere. Different heating rates were applied during the thermal treatments. The chemical composition and structural properties of the deposited layers as well as the distribution of the elements through the kesterite thin film have been investigated. The initial growth of a SnS secondary phase during evaporation led to the formation of this secondary phase next to the Mo back contact. Solar cell power conversion efficiencies were limited to values about 3 % due to this secondary phase. Furthermore, an increased open circuit voltage was demonstrated by using a Zn(O,S) buffer layerThis work was supported by DAAD project (INTERKEST, Ref: 57050358), Marie Curie-ITN (KESTCELLS, GA: 316488) and MINECO project (SUNBEAM, ENE2013-49136-C4-3-R). RC and ES acknowledge financial support from Spanish MINECO within the Ramón y Cajal program (RYC-2011-08521) and (RYC-2011-09212) respectively. SG also thanks the Government of Spain for the FPI fellowship (BES-2014-068533)
In situ cell for grazing incidence x ray diffraction on thin films in thermal catalysis
A cell for synchrotron based grazing incidence x ray diffraction at ambient pressures and moderate temperatures in a controlled gas atmosphere is presented. The cell is suited for the in situ study of thin film samples under catalytically relevant conditions. To some extent, in addition to diffraction, the cell can be simultaneously applied for x ray reflectometry and fluorescence studies. Different domes enclosing the sample have been studied and selected to ensure minimum contribution to the diffraction patterns. The applicability of the cell is demonstrated using synchrotron radiation by monitoring structural changes of a 3 nm Pd thin film upon interaction with gas phase hydrogen and during acetylene semihydrogenation at 150 amp; 8201; C. The cell allows investigation of very thin films under catalytically relevant condition
Hot embossing for fabrication of a microfluidic 3D cell culture
Clinically relevant studies of cell function in vitro require a physiologically-representative microenvironment possessing aspects such as a 3D extracellular matrix (ECM) and controlled biochemical and biophysical parameters. A polydimethylsiloxane (PDMS) microfluidic system with a 3D collagen gel has previously served for analysis of factors inducing different responses of cells in a 3D microenvironment under controlled biochemical and biophysical parameters. In the present study, applying the known commercially-viable manufacturing methods to a cyclic olefin copolymer (COC) material resulted in a microfluidic device with enhanced 3D gel capabilities, controlled surface properties, and improved potential to serve high-volume applications. Hot embossing and roller lamination molded and sealed the microfluidic device. A combination of oxygen plasma and thermal treatments enhanced the sealing, ensured proper placement of the 3D gel, and created controlled and stable surface properties within the device. Culture of cells in the new device indicated no adverse effects of the COC material or processing as compared to previous PDMS devices. The results demonstrate a methodology to transition microfludic devices for 3D cell culture from scientific research to high-volume applications with broad clinical impact.National Cancer Institute (U.S.) (award R21CA140096)Charles Stark Draper Laboratory (IR&D Grant
High Frequency of Copy Number Variations and Sequence Variants at CYP21A2 Locus: Implication for the Genetic Diagnosis of 21-Hydroxylase Deficiency
BACKGROUND: The systematic study of the human genome indicates that the inter-individual variability is greater than expected and it is not only related to sequence polymorphisms but also to gene copy number variants (CNVs). Congenital Adrenal Hyperplasia due to 21-hydroxylase deficiency (21OHD) is the most common autosomal recessive disorder with a carrier frequency of 1:25 to 1:10. The gene that encodes 21-hydroxylase enzyme, CYP21A2, is considered to be one of the most polymorphic human genes. Copy number variations, such as deletions, which are severe mutations common in 21OHD patients, or gene duplications, which have been reported as rare events, have also been described. The correct characterization of 21OHD alleles is important for disease carrier detection and genetic counselling METHODOLOGY AND FINDINGS: CYP21A2 genotyping by sequencing has been performed in a random sample of the Spanish population, where 144 individuals recruited from university students and employees of the hospital were studied. The frequency of CYP21A2 mutated alleles in our sample was 15.3% (77.3% were mild mutations, 9% were severe mutations and 13.6% were novel variants). Gene dosage assessment was also performed when CYP21A2 gene duplication was suspected. This analysis showed that 7% of individuals bore a chromosome with a duplicated CYP21A2 gene, where one of the copies was mutated. CONCLUSIONS: As far as we know, the present study has shown the highest frequency of 21OHD carriers reported by a genotyping analysis. In addition, a high frequency of alleles with CYP21A2 duplications, which could be misinterpreted as 21OHD alleles, was found. Moreover, a high frequency of novel genetic variations with an unknown effect on 21-hydroxylase activity was also found. The high frequency of gene duplications, as well as novel variations, should be considered since they have an important involvement in carrier testing and genetic counseling
Oxidation of Aqueous Phosphorous Acid Electrolyte in Contact with Pt Studied by X ray Photoemission Spectroscopy
The oxidation of the aqueous H3PO3 in contact with Pt was investigated for a fundamental understanding of the Pt aqueous H3PO3 interaction with the goal of providing a comprehensive basis for the further optimization of high temperature polymer electrolyte membrane fuel cells HT PEMFCs . Ion exchange chromatography IEC experiments suggested that in ambient conditions, Pt catalyzes H3PO3 oxidation to H3PO4 with H2O. X ray photoelectron spectroscopy XPS on different substrates, including Au and Pt, previously treated in H3PO3 solutions was conducted to determine the catalytic abilities of selected metals toward H3PO3 oxidation. In situ ambient pressure hard X ray photoelectron spectroscopy AP HAXPES combined with the dip and pull method was performed to investigate the state of H3PO3 at the Pt H3PO3 interface and in the bulk solution. It was shown that whereas H3PO3 remains stable in the bulk solution, the catalyzed oxidation of H3PO3 by H2O to H3PO4 accompanied by H2 generation occurs in contact with the Pt surface. This catalytic process likely involves H3PO3 adsorption at the Pt surface in a highly reactive pyramidal tautomeric configuratio
Solvent-selective routing for centrifugally automated solid-phase purification of RNA
The final publication is available at Springer via https://doi.org/10.1007/s10404-014-1477-9.We present a disc-based module for rotationally controlled solid-phase purification of RNA from cell lysate. To this end, multi-stage routing of a sequence of aqueous and organic liquids into designated waste and elution reservoirs is implemented by a network of strategically placed, solvent-selective composite valves. Using a bead-based stationary phase at the entrance of the router, we show that total RNA is purified with high integrity from cultured MCF7 and T47D cell lines, human leucocytes and Haemophilus influenzae cell lysates. Furthermore, we demonstrate the broad applicability of the device through the in vitro amplification of RNA purified on-disc using RT-PCR and NASBA. Our novel router will be at the pivot of a forthcoming, fully integrated and automated sample preparation system for RNA-based analysis.Peer reviewe
- …