4,626 research outputs found
Inertial Stochastic PALM (iSPALM) and Applications in Machine Learning
Inertial algorithms for minimizing nonsmooth and nonconvex functions as the
inertial proximal alternating linearized minimization algorithm (iPALM) have
demonstrated their superiority with respect to computation time over their non
inertial variants. In many problems in imaging and machine learning, the
objective functions have a special form involving huge data which encourage the
application of stochastic algorithms. While algorithms based on stochastic
gradient descent are still used in the majority of applications, recently also
stochastic algorithms for minimizing nonsmooth and nonconvex functions were
proposed. In this paper, we derive an inertial variant of a stochastic PALM
algorithm with variance-reduced gradient estimator, called iSPALM, and prove
linear convergence of the algorithm under certain assumptions. Our inertial
approach can be seen as generalization of momentum methods widely used to speed
up and stabilize optimization algorithms, in particular in machine learning, to
nonsmooth problems. Numerical experiments for learning the weights of a
so-called proximal neural network and the parameters of Student-t mixture
models show that our new algorithm outperforms both stochastic PALM and its
deterministic counterparts
Second Order Differences of Cyclic Data and Applications in Variational Denoising
In many image and signal processing applications, as interferometric
synthetic aperture radar (SAR), electroencephalogram (EEG) data analysis or
color image restoration in HSV or LCh spaces the data has its range on the
one-dimensional sphere . Although the minimization of total
variation (TV) regularized functionals is among the most popular methods for
edge-preserving image restoration such methods were only very recently applied
to cyclic structures. However, as for Euclidean data, TV regularized
variational methods suffer from the so called staircasing effect. This effect
can be avoided by involving higher order derivatives into the functional.
This is the first paper which uses higher order differences of cyclic data in
regularization terms of energy functionals for image restoration. We introduce
absolute higher order differences for -valued data in a sound way
which is independent of the chosen representation system on the circle. Our
absolute cyclic first order difference is just the geodesic distance between
points. Similar to the geodesic distances the absolute cyclic second order
differences have only values in [0,{\pi}]. We update the cyclic variational TV
approach by our new cyclic second order differences. To minimize the
corresponding functional we apply a cyclic proximal point method which was
recently successfully proposed for Hadamard manifolds. Choosing appropriate
cycles this algorithm can be implemented in an efficient way. The main steps
require the evaluation of proximal mappings of our cyclic differences for which
we provide analytical expressions. Under certain conditions we prove the
convergence of our algorithm. Various numerical examples with artificial as
well as real-world data demonstrate the advantageous performance of our
algorithm.Comment: 32 pages, 16 figures, shortened version of submitted manuscrip
A Nonlocal Denoising Algorithm for Manifold-Valued Images Using Second Order Statistics
Nonlocal patch-based methods, in particular the Bayes' approach of Lebrun,
Buades and Morel (2013), are considered as state-of-the-art methods for
denoising (color) images corrupted by white Gaussian noise of moderate
variance. This paper is the first attempt to generalize this technique to
manifold-valued images. Such images, for example images with phase or
directional entries or with values in the manifold of symmetric positive
definite matrices, are frequently encountered in real-world applications.
Generalizing the normal law to manifolds is not canonical and different
attempts have been considered. Here we focus on a straightforward intrinsic
model and discuss the relation to other approaches for specific manifolds. We
reinterpret the Bayesian approach of Lebrun et al. (2013) in terms of minimum
mean squared error estimation, which motivates our definition of a
corresponding estimator on the manifold. With this estimator at hand we present
a nonlocal patch-based method for the restoration of manifold-valued images.
Various proof of concept examples demonstrate the potential of the proposed
algorithm
A Second Order Non-Smooth Variational Model for Restoring Manifold-Valued Images
We introduce a new non-smooth variational model for the restoration of
manifold-valued data which includes second order differences in the
regularization term. While such models were successfully applied for
real-valued images, we introduce the second order difference and the
corresponding variational models for manifold data, which up to now only
existed for cyclic data. The approach requires a combination of techniques from
numerical analysis, convex optimization and differential geometry. First, we
establish a suitable definition of absolute second order differences for
signals and images with values in a manifold. Employing this definition, we
introduce a variational denoising model based on first and second order
differences in the manifold setup. In order to minimize the corresponding
functional, we develop an algorithm using an inexact cyclic proximal point
algorithm. We propose an efficient strategy for the computation of the
corresponding proximal mappings in symmetric spaces utilizing the machinery of
Jacobi fields. For the n-sphere and the manifold of symmetric positive definite
matrices, we demonstrate the performance of our algorithm in practice. We prove
the convergence of the proposed exact and inexact variant of the cyclic
proximal point algorithm in Hadamard spaces. These results which are of
interest on its own include, e.g., the manifold of symmetric positive definite
matrices
- …
