1,506 research outputs found
Effect of hydrostatic pressure on the ambient pressure superconductor CePt_3Si
We studied the evolution of superconductivity (sc) and antiferromagnetism
(afm) in the heavy fermion compound CePt_3Si with hydrostatic pressure. We
present a pressure-temperature phase diagram established by electrical
transport measurements. Pressure shifts the superconducting transition
temperature, T_c, to lower temperatures. Antiferromagnetism is suppressed at a
critical pressure P_c=0.5 GPa.Comment: 2 pages, 2 figures, proceedings SCES'0
Can neutral and ionized PAHs be carriers of the UV extinction bump and the diffuse interstellar bands?
Up to now, no laboratory-based study has investigated polycyclic aromatic
hydrocarbon (PAH) species as potential carriers of both the diffuse
interstellar bands (DIBs) and the 2175 A UV bump. We examined the proposed
correlation between these two features by applying experimental and theoretical
techniques on two specific medium-sized/large PAHs (dibenzorubicene C30H14 and
hexabenzocoronene C42H18) in their neutral and cationic states. It was already
shown that mixtures of sufficiently large, neutral PAHs can partly or even
completely account for the UV bump. We investigated how the absorption bands
are altered upon ionization of these molecules by interstellar UV photons. The
experimental studies presented here were realized by performing matrix
isolation spectroscopy with subsequent far-UV irradiation. The main effects
were found to be a broadening of the absorption bands in the UV combined with
slight red shifts. The position of the complete pi - pi* absorption structure
around 217.5 nm, however, remains more or less unchanged which could explain
the observed position invariance of the interstellar bump for different lines
of sight. This favors the assignment of this feature to the interstellar PAH
population. As far as the DIBs are concerned, neither our investigations nor
the laboratory studies carried out by other research groups support a possible
connection with this class of molecules. Instead, there are reasonable
arguments that neutral and singly ionized cationic PAHs cannot be made
responsible for the DIBs.Comment: 11 pages, 7 figures, 1 tabl
Tunable Graphene Antennas for Selective Enhancement of THz-Emission
In this paper, we will introduce THz graphene antennas that strongly enhance
the emission rate of quantum systems at specific frequencies. The tunability of
these antennas can be used to selectively enhance individual spectral features.
We will show as an example that any weak transition in the spectrum of coronene
can become the dominant contribution. This selective and tunable enhancement
establishes a new class of graphene-based THz devices, which will find
applications in sensors, novel light sources, spectroscopy, and quantum
communication devices
Field tuned critical fluctuations in YFe2Al10: Evidence from magnetization, 27Al (NMR, NQR) investigations
We report magnetization, specific heat, and NMR investigations on YFe2Al10
over a wide range in temperature and magnetic field and zero field (NQR)
measurements. Magnetic susceptibility, specific heat and spin-lattice
relaxation rate divided by T (1/T1T) follow a weak power law (T^-0.4)
temperature dependence, which is a signature of critical fluctuations of Fe
moments. The value of the Sommerfeld-Wilson ratio and linear relation between
1/T1T and chi(T) suggest the existence of ferromagnetic correlations in this
system. No magnetic ordering down to 50 mK in Cp(T) and the unusual temperature
and field scaling of the bulk and NMR data are associated with a magnetic
instability which drives the system to quantum criticality. The magnetic
properties of the system are tuned by field wherein ferromagnetic fluctuations
are suppressed and a crossover from quantum critical to FL behavior is observed
with increasing magnetic field
Magnetic Bound States in Dimerized Quantum Spin Systems
Magnetic bound states are a general phenomenon in low dimensional
antiferromagnets with gapped singlet states. Using Raman scattering on three
compounds as dedicated examples we show how exchange topology, dimensionality,
defects and thermal fluctuations influence the properties and the spectral
weight of these states.Comment: 3 pages, 1 figure, proceedings of the SCES'98, Paris, to be published
in Physica
Pair breaking by nonmagnetic impurities in the noncentrosymmetric superconductor CePt3Si
We have studied the effect of Ge substitution and pressure on the
heavy-fermion superconductor CePt3Si. Ge substitution on the Si site acts as
negative chemical pressure leading to an increase in the unit-cell volume but
also introduces chemical disorder. We carried out electrical resistivity and ac
heat-capacity experiments under hydrostatic pressure on CePt3Si1-xGex (x=0,
0.06). Our experiments show that the suppression of superconductivity in
CePt3Si1-xGex is mainly caused by the scattering potential, rather than volume
expansion, introduced by the Ge dopants. The antiferromagnetic order is
essentially not affected by the chemical disorder.Comment: 4 pages, 4 figure
Thermodynamic evidence for valley-dependent density of states in bulk bismuth
Electron-like carriers in bismuth are described by the Dirac Hamiltonian,
with a band mass becoming a thousandth of the bare electron mass along one
crystalline axis. The existence of three anisotropic valleys offers electrons
an additional degree of freedom, a subject of recent attention. Here, we map
the Landau spectrum by angle-resolved magnetostriction, and quantify the
carrier number in each valley: while the electron valleys keep identical
spectra, they substantially differ in their density of states at the Fermi
level. Thus, the electron fluid does not keep the rotational symmetry of the
lattice at low temperature and high magnetic field, even in the absence of
internal strain. This effect, reminiscent of the Coulomb pseudo-gap in
localized electronic states, affects only electrons in the immediate vicinity
of the Fermi level. It presents the most striking departure from the
non-interacting picture of electrons in bulk bismuth.Comment: 6 pages, 3 Figure
Non-Fermi liquid normal state of the Heavy Fermion superconductor UBe13
Non-Fermi liquid (NFL) behavior in the normal state of the heavy-fermion
superconductor UBe13 is studied by means of low-temperature measurements of the
specific heat, C, and electrical resistivity, \rho, on a high-quality single
crystal in magnetic fields up to 15.5 T. At B=0, unconventional
superconductivity forms at Tc=0.9 K out of an incoherent state, characterized
by a large and strongly temperature dependent \rho(T). In the magnetic field
interval 4 T \leq B \leq 10 T, \rho(T) follows a T^3/2 behavior for Tc(B)\leq T
\leq 1 K, while \rho is proportional to T at higher temperatures. Corresponding
Non-Fermi liquid behavior is observed in C/T as well and hints at a nearby
antiferromagnetic (AF) quantum critical point (QCP) covered by the
superconducting state. We speculate that the suppression of short-range AF
correlations observed by thermal expansion and specific heat measurements below
T_L \simeq 0.7 K (B=0) yields a field-induced QCP, T_L \to 0, at B=4.5 T.Comment: Presented at the M2S-2003 conference in Rio / Brazi
Unchanged thermopower enhancement at the semiconductor-metal transition in correlated FeSbTe
Substitution of Sb in FeSb by less than 0.5% of Te induces a transition
from a correlated semiconductor to an unconventional metal with large effective
charge carrier mass . Spanning the entire range of the semiconductor-metal
crossover, we observed an almost constant enhancement of the measured
thermopower compared to that estimated by the classical theory of electron
diffusion. Using the latter for a quantitative description one has to employ an
enhancement factor of 10-30. Our observations point to the importance of
electron-electron correlations in the thermal transport of FeSb, and
suggest a route to design thermoelectric materials for cryogenic applications.Comment: 3 pages, 3 figures, accepted for publication in Appl. Phys. Lett.
(2011
- …