2,011 research outputs found
Developments in the simulation of compressible inviscid and viscous flow on supercomputers
In anticipation of future supercomputers, finite difference codes are rapidly being extended to simulate three-dimensional compressible flow about complex configurations. Some of these developments are reviewed. The importance of computational flow visualization and diagnostic methods to three-dimensional flow simulation is also briefly discussed
The case for a cold dark matter cusp in Draco
We use a new mass modelling method, GravSphere, to measure the central dark
matter density profile of the Draco dwarf spheroidal galaxy. Draco's star
formation shut down long ago, making it a prime candidate for hosting a
'pristine' dark matter cusp, unaffected by stellar feedback during galaxy
formation. We first test GravSphere on a suite of tidally stripped mock
'Draco'-like dwarfs. We show that we are able to correctly infer the dark
matter density profile of both cusped and cored mocks within our 95% confidence
intervals. While we obtain only a weak inference on the logarithmic slope of
these density profiles, we are able to obtain a robust inference of the
amplitude of the inner dark matter density at 150pc, . We show that, combined with constraints on the density profile at larger
radii, this is sufficient to distinguish a Cold Dark Matter
(CDM) cusp that has from alternative dark matter models
that have lower inner densities. We then apply GravSphere to the real Draco
data. We find that Draco has an inner dark matter density of , consistent with a CDM cusp. Using a velocity independent
SIDM model, calibrated on SIDM cosmological simulations, we show that
Draco's high central density gives an upper bound on the SIDM cross section of
at 99% confidence. We conclude that
the inner density of nearby dwarf galaxies like Draco provides a new and
competitive probe of dark matter models.Comment: 19 pages, 11 Figures. Final version accepted for publication in MNRA
Dark matter heats up in dwarf galaxies
Gravitational potential fluctuations driven by bursty star formation can
kinematically 'heat up' dark matter at the centres of dwarf galaxies. A key
prediction of such models is that, at a fixed dark matter halo mass, dwarfs
with a higher stellar mass will have a lower central dark matter density. We
use stellar kinematics and HI gas rotation curves to infer the inner dark
matter densities of eight dwarf spheroidal and eight dwarf irregular galaxies
with a wide range of star formation histories. For all galaxies, we estimate
the dark matter density at a common radius of 150pc, . We find that our sample of dwarfs falls into two
distinct classes. Those that stopped forming stars over 6Gyrs ago favour
central densities , consistent with cold dark matter cusps, while those with more
extended star formation favour , consistent with shallower dark matter cores. Using
abundance matching to infer pre-infall halo masses, , we show that
this dichotomy is in excellent agreement with models in which dark matter is
heated up by bursty star formation. In particular, we find that steadily decreases with increasing stellar mass-to-halo
mass ratio, . Our results suggest that, to leading order, dark
matter is a cold, collisionless, fluid that can be kinematically 'heated up'
and moved around.Comment: 22 pages, 10 Figures. Final version accepted for publication in MNRA
Inductive Algebras for Finite Heisenberg Groups
A characterization of the maximal abelian sub-algebras of matrix algebras
that are normalized by the canonical representation of a finite Heisenberg
group is given. Examples are constructed using a classification result for
finite Heisenberg groups.Comment: 5 page
A formulation for the boundary-layer equations in general coordinates
This is a working paper in which a formulation is given for solving the boundary-layer equations in general body-fitted curvilinear coordinates while retaining the original Cartesian dependent variables. The solution procedure does not require that any of the coordinates be orthogonal, and much of the software developed for many Navier-Stokes schemes can be readily used. A limited number of calculations has been undertaken to validate the approach
On the propagation of congestion waves in the Internet
Traffic modeling of communication networks such as the Internet has become a very important field of research. A number of interesting phenomena are found in measurements and traffic simulations. One of them is the propagation of congestion waves opposite to the main packet flow direction. The purpose of this paper is to model and analyze packet congestion on a given route and to provide a possible explanation for this phenomenon. (c) 2005 Elsevier B.V. All rights reserved
Computation of wing-vortex interaction in transonic flow using implicit finite difference algorithm
An implicit delta form finite difference algorithm for Euler equations in conservation law form was used in preliminary calculations of three dimensional wing vortex interaction. Both steady and unsteady transonic flow wing vortex interactions are computed. The computations themselves are meant to guide upcoming wind tunnel experiments of the same flow field. Various modifications to the numerical method that are intended to improve computational efficiency are also described and tested in both two and three dimensions. Combination of these methods can reduce the overall computational time by a factor of 4
Bad neighbors? Niche overlap and asymmetric competition between native and Lessepsian limpets in the Eastern Mediterranean rocky intertidal.
Abstract The Eastern Mediterranean Sea hosts more non-indigenous species than any other marine region, yet their impacts on the native biota remain poorly understood. Focusing on mollusks from the Israeli rocky intertidal, we explored the hypothesis that this abiotically harsh habitat supports a limited trait diversity, and thus may promote niche overlap and competition between native and non-indigenous species. Indeed, native and non-indigenous assemblage components often had a highly similar trait composition, caused by functionally similar native (Patella caerulea) and non-indigenous (Cellana rota) limpets. Body size of P. caerulea decreased with increasing C. rota prevalence, but not vice versa, indicating potential asymmetric competition. Although both species have coexisted in Israel for >15 years, a rapid 'replacement' of native limpets by C. rota has been reported for a thermally polluted site, suggesting that competition and regionally rapid climate-related seawater warming might interact to progressively erode native limpet performance along the Israeli coast
Surgery of pulmonary aspergillomas in immunocompromised patients
Introduction: Pulmonary aspergillosis is a devastating complication in immunocompromised patients. Timing of surgery is controversial and depends on the patients' general condition
- …