10,814 research outputs found

    Confronting expansion distances of planetary nebulae with Gaia DR2 measurements

    Full text link
    Individual distances to planetary nebulae are of the utmost relevance for our understanding of post-asymptotic giant-branch evolution because they allow a precise determination of stellar and nebular properties. Also, objects with individual distances serve as calibrators for the so-called statistical distances based on secondary nebular properties. With independently known distances, it is possible to check empirically our understanding of the formation and evolution of planetary nebulae as suggested by existing hydrodynamical simulations. We compared the expansion parallaxes that have recently been determined for a number of planetary nebulae with the trigonometric parallaxes provided by the Gaia Data Release 2. Except for two out of 11 nebulae, we found good agreement between the expansion and the Gaia trigonometric parallaxes without any systematic trend with distance. Therefore, the Gaia measurements also prove that the correction factors necessary to convert proper motions of shocks into Doppler velocities cannot be ignored. Rather, the size of these correction factors and their evolution with time as predicted by 1-D hydrodynamical models of planetary nebulae is basically validated. These correction factors are generally greater than unity and are different for the outer shell and the inner bright rim of a planetary nebula. The Gaia measurements also confirm earlier findings that spectroscopic methods often lead to an overestimation of the distance. They also show that even modelling of the entire system of star and nebula by means of sophisticated photoionization modeling may not always provide reliable results. The Gaia measurements confirm the basic correctness of the present radiation-hydrodynamics models, which predict that both the shell and the rim of a planetary nebula are two independently expanding entities.Comment: Accepted by Astronomy & Astrophysics; 8 pages, 3 figures, 1 tabl

    The evolution of planetary nebulae. VIII. True expansion rates and visibility times

    Full text link
    The visibility time of planetary nebulae (PNe) in stellar systems is an essential quantity for estimating the size of a PN population in the context of general population studies. For instance, it enters directly into the PN death rate determination. The basic ingredient for determining visibility times is the typical nebular expansion velocity, as a suited average over all PN sizes of a PN population within a certain volume or stellar system. The true expansion speed of the outer nebular edge of a PN is, however, not accessible by spectroscopy -- a difficulty that we surmount by radiation-hydrodynamics modelling. We find a mean true expansion velocity of 42 km/s, i.e. nearly twice as high as the commonly adopted value to date. Accordingly, the time for a PN to expand to a radius of, say 0.9 pc, is only 21000 +/- 5000 years. This visibility time of a PN holds for all central star masses since a nebula does not become extinct as the central star fades. There is, however, a dependence on metallicity in the sense that the visibility time becomes shorter for lower nebular metal content. With the higher expansion rate of PNe derived here we determined their local death-rate density as (1.4 +/- 0.5) x E-12 PN pc^{-3} yr^{-1}, using the local PN density advocated by Frew (2008).Comment: 20 pages, 10 Figures; accepted for publication in Astronomy & Astrophysics / Note added in proo

    Individual Microscopic Results Of Bottleneck Experiments

    Full text link
    This contribution provides microscopic experimental study of pedestrian motion in front of the bottleneck, explains the high variance of individual travel time by the statistical analysis of trajectories. The analysis shows that this heterogeneity increases with increasing occupancy. Some participants were able to reach lower travel time due more efficient path selection and more aggressive behavior within the crowd. Based on this observations, linear model predicting travel time with respect to the aggressiveness of pedestrian is proposed.Comment: Submitted to Traffic and Granullar Flow 2015, Springe

    The evolution of planetary nebulae VII. Modelling planetary nebulae of distant stellar systems

    Full text link
    By means of hydrodynamical models we do the first investigations of how the properties of planetary nebulae are affected by their metal content and what can be learned from spatially unresolved spectrograms of planetary nebulae in distant stellar systems. We computed a new series of 1D radiation-hydrodynamics planetary nebulae model sequences with central stars of 0.595 M_sun surrounded by initial envelope structures that differ only by their metal content. At selected phases along the evolutionary path, the hydrodynamic terms were switched off, allowing the models to relax for fixed radial structure and radiation field into their equilibrium state with respect to energy and ionisation. The analyses of the line spectra emitted from both the dynamical and static models enabled us to systematically study the influence of hydrodynamics as a function of metallicity and evolution. We also recomputed selected sequences already used in previous publications, but now with different metal abundances. These sequences were used to study the expansion properties of planetary nebulae close to the bright cut-off of the planetary nebula luminosity function. Our simulations show that the metal content strongly influences the expansion of planetary nebulae: the lower the metal content, the weaker the pressure of the stellar wind bubble, but the faster the expansion of the outer shell because of the higher electron temperature. This is in variance with the predictions of the interacting-stellar-winds model (or its variants) according to which only the central-star wind is thought to be responsible for driving the expansion of a planetary nebula. Metal-poor objects around slowly evolving central stars become very dilute and are prone to depart from thermal equilibrium because then adiabatic expansion contributes to gas cooling. ...abridged abstract.Comment: 35 pages, 43 figures, accepted for publication by A&
    corecore