442 research outputs found

    Formation of Galaxy Clusters

    Full text link
    In this review, we describe our current understanding of cluster formation: from the general picture of collapse from initial density fluctuations in an expanding Universe to detailed simulations of cluster formation including the effects of galaxy formation. We outline both the areas in which highly accurate predictions of theoretical models can be obtained and areas where predictions are uncertain due to uncertain physics of galaxy formation and feedback. The former includes the description of the structural properties of the dark matter halos hosting cluster, their mass function and clustering properties. Their study provides a foundation for cosmological applications of clusters and for testing the fundamental assumptions of the standard model of structure formation. The latter includes the description of the total gas and stellar fractions, the thermodynamical and non-thermal processes in the intracluster plasma. Their study serves as a testing ground for galaxy formation models and plasma physics. In this context, we identify a suitable radial range where the observed thermal properties of the intra-cluster plasma exhibit the most regular behavior and thus can be used to define robust observational proxies for the total cluster mass. We put particular emphasis on examining assumptions and limitations of the widely used self-similar model of clusters. Finally, we discuss the formation of clusters in non-standard cosmological models, such as non-Gaussian models for the initial density field and models with modified gravity, along with prospects for testing these alternative scenarios with large cluster surveys in the near future.Comment: 66 pages, 17 figures, review to be published in 2012 Annual Reviews of Astronomy & Astrophysic

    Liver disease in chelated transfusion-dependent thalassemics: the role of iron overload and chronic hepatitis C.

    Get PDF
    Abstract Iron overload and hepatitis virus C infection cause liver fibrosis in thalassemics. In a monocentric retrospective analysis of liver disease in a cohort of 191 transfusion-dependent thalassemics, in 126 patients who had undergone liver biopsy (mean age 17.2 years; 58 hepatitis virus C-RNA positive and 68 hepatitis virus C-RNA negative) the liver iron concentration (median 2.4 mg/gr dry liver weight) was closely related to serum ferritin levels (R = 0.58; p<0.0001). Male gender (OR 4.12) and serum hepatitis virus C-RNA positivity (OR 11.04) were independent risk factors for advanced liver fibrosis. The majority of hepatitis virus C-RNA negative patients with low iron load did not develop liver fibrosis, while hepatitis virus C-RNA positive patients infected with genotype 1 or 4 and iron overload more frequently developed advanced fibrosis. Hepatitis virus C infection is the main risk factor for liver fibrosis in transfusion-dependent thalassemics. Adequate chelation therapy usually prevents the development of liver fibrosis in thalassemics free of hepatitis virus C-infection and reduces the risk of developing severe fibrosis in thalassemics with chronic hepatitis C

    Global Networks of Trade and Bits

    Get PDF
    Considerable efforts have been made in recent years to produce detailed topologies of the Internet. Although Internet topology data have been brought to the attention of a wide and somewhat diverse audience of scholars, so far they have been overlooked by economists. In this paper, we suggest that such data could be effectively treated as a proxy to characterize the size of the "digital economy" at country level and outsourcing: thus, we analyse the topological structure of the network of trade in digital services (trade in bits) and compare it with that of the more traditional flow of manufactured goods across countries. To perform meaningful comparisons across networks with different characteristics, we define a stochastic benchmark for the number of connections among each country-pair, based on hypergeometric distribution. Original data are thus filtered by means of different thresholds, so that we only focus on the strongest links, i.e., statistically significant links. We find that trade in bits displays a sparser and less hierarchical network structure, which is more similar to trade in high-skill manufactured goods than total trade. Lastly, distance plays a more prominent role in shaping the network of international trade in physical goods than trade in digital services.Comment: 25 pages, 6 figure

    Improving the Characterization of Radiologically Isolated Syndrome Suggestive of Multiple Sclerosis

    Get PDF
    OBJECTIVE: To improve the characterization of asymptomatic subjects with brain magnetic resonance imaging (MRI) abnormalities highly suggestive of multiple sclerosis (MS), a condition named as "radiologically isolated syndrome" (RIS). METHODS: Quantitative MRI metrics such as brain volumes and magnetization transfer (MT) were assessed in 19 subjects previously classified as RIS, 20 demographically-matched relapsing-remitting MS (RRMS) patients and 20 healthy controls (HC). Specific measures were: white matter (WM) lesion volumes (LV), total and regional brain volumes, and MT ratio (MTr) in lesions, normal-appearing WM (NAWM) and cortex. RESULTS: LV was similar in RIS and RRMS, without differences in distribution and frequency at lesion mapping. Brain volumes were similarly lower in RRMS and RIS than in HC (p<0.001). Lesional-MTr was lower in RRMS than in RIS (p = 0.048); NAWM-MTr and cortical-MTr were similar in RIS and HC and lower (p<0.01) in RRMS. These values were particularly lower in RRMS than in RIS in the sensorimotor and memory networks. A multivariate logistic regression analysis showed that 13/19 RIS had ≥70% probability of being classified as RRMS on the basis of their brain volume and lesional-MTr values. CONCLUSIONS: Macroscopic brain damage was similar in RIS and RRMS. However, the subtle tissue damage detected by MTr was milder in RIS than in RRMS in clinically relevant brain regions, suggesting an explanation for the lack of clinical manifestations of subjects with RIS. This new approach could be useful for narrowing down the RIS individuals with a high risk of progression to MS

    ALMS1-Deficient Fibroblasts Over-Express Extra-Cellular Matrix Components, Display Cell Cycle Delay and Are Resistant to Apoptosis

    Get PDF
    Alström Syndrome (ALMS) is a rare genetic disorder (483 living cases), characterized by many clinical manifestations, including blindness, obesity, type 2 diabetes and cardiomyopathy. ALMS is caused by mutations in the ALMS1 gene, encoding for a large protein with implicated roles in ciliary function, cellular quiescence and intracellular transport. Patients with ALMS have extensive fibrosis in nearly all tissues resulting in a progressive organ failure which is often the ultimate cause of death. To focus on the role of ALMS1 mutations in the generation and maintenance of this pathological fibrosis, we performed gene expression analysis, ultrastructural characterization and functional assays in 4 dermal fibroblast cultures from ALMS patients. Using a genome-wide gene expression analysis we found alterations in genes belonging to specific categories (cell cycle, extracellular matrix (ECM) and fibrosis, cellular architecture/motility and apoptosis). ALMS fibroblasts display cytoskeleton abnormalities and migration impairment, up-regulate the expression and production of collagens and despite the increase in the cell cycle length are more resistant to apoptosis. Therefore ALMS1-deficient fibroblasts showed a constitutively activated myofibroblast phenotype even if they do not derive from a fibrotic lesion. Our results support a genetic basis for the fibrosis observed in ALMS and show that both an excessive ECM production and a failure to eliminate myofibroblasts are key mechanisms. Furthermore, our findings suggest new roles for ALMS1 in both intra- and extra-cellular events which are essential not only for the normal cellular function but also for cell-cell and ECM-cell interactions

    Early B-cell Factor gene association with multiple sclerosis in the Spanish population

    Get PDF
    BACKGROUND: The etiology of multiple sclerosis (MS) is at present not fully elucidated, although it is considered to result from the interaction of environmental and genetic susceptibility factors. In this work we aimed at testing the Early B-cell Factor (EBF1) gene as a functional and positional candidate risk factor for this neurological disease. Axonal damage is a hallmark for multiple sclerosis clinical disability and EBF plays an evolutionarily conserved role in the expression of proteins essential for axonal pathfinding. Failure of B-cell differentiation was found in EBF-deficient mice and involvement of B-lymphocytes in MS has been suggested from their presence in cerebrospinal fluid and lesions of patients. METHODS: The role of the EBF1 gene in multiple sclerosis susceptibility was analyzed by performing a case-control study with 356 multiple sclerosis patients and 540 ethnically matched controls comparing the EBF1 polymorphism rs1368297 and the microsatellite D5S2038. RESULTS: Significant association of an EBF1-intronic polymorphism (rs1368297, A vs. T: p = 0.02; OR = 1.26 and AA vs. [TA+TT]: p = 0.02; OR = 1.39) was discovered. This association was even stronger after stratification for the well-established risk factor of multiple sclerosis in the Major Histocompatibility Complex, DRB1*1501 (AA vs. [TA+TT]: p = 0.005; OR = 1.78). A trend for association in the case-control study of another EBF1 marker, the allele 5 of the very informative microsatellite D5S2038, was corroborated by Transmission Disequilibrium Test of 53 trios (p = 0.03). CONCLUSION: Our data support EBF1 gene association with MS pathogenesis in the Spanish white population. Two genetic markers within the EBF1 gene have been found associated with this neurological disease, indicative either of their causative role or that of some other polymorphism in linkage disequilibrium with them

    The Feasibility and Impact of Delivering a Mind-Body Intervention in a Virtual World

    Get PDF
    Introduction: Mind-body medical approaches may ameliorate chronic disease. Stress reduction is particularly helpful, but face-to-face delivery systems cannot reach all those who might benefit. An online, 3-dimensional virtual world may be able to support the rich interpersonal interactions required of this approach. In this pilot study, we explore the feasibility of translating a face-to-face stress reduction program into an online virtual setting and estimate the effect size of the intervention. Methods and Findings: Domain experts in virtual world technology joined with mind body practitioners to translate an existing 8 week relaxation response-based resiliency program into an 8-week virtual world-based program in Second Life™ (SL). Twenty-four healthy volunteers with at least one month's experience in SL completed the program. Each subject filled out the Perceived Stress Scale (PSS) and the Symptom Checklist 90- Revised (SCL-90-R) before and after taking part. Participants took part in one of 3 groups of about 10 subjects. The participants found the program to be helpful and enjoyable. Many reported that the virtual environment was an excellent substitute for the preferred face-to-face approach. On quantitative measures, there was a general trend toward decreased perceived stress, (15.7 to 15.0), symptoms of depression, (57.6 to 57.0) and anxiety (56.8 to 54.8). There was a significant decrease of 2.8 points on the SCL-90-R Global Severity Index (p<0.05). Conclusions: This pilot project showed that it is feasible to deliver a typical mind-body medical intervention through a virtual environment and that it is well received. Moreover, the small reduction in psychological distress suggests further research is warranted. Based on the data collected for this project, a randomized trial with less than 50 subjects would be appropriately powered if perceived stress is the primary outcome
    corecore