247 research outputs found
Unifying the treatment of preposition-determiner contractions in German universal dependencies treebanks
HDT-UD, the largest German UD treebank by a large margin, as well as the German-LIT treebank, currently do not analyze preposition-determiner contractions such as zum (= zu dem, “to the”) as multi-word tokens, which is inconsistent both with UD guidelines as well as other German UD corpora (GSD and PUD). In this paper, we show that harmonizing corpora with regard to this highly frequent phenomenon using a lookup-table based approach leads to a considerable increase in automatic parsing performance
RobertNLP at the IWPT 2020 shared task: surprisingly simple enhanced UD parsing for English
This paper presents our system at the IWPT 2020 Shared Task on Parsing into Enhanced Universal Dependencies. Using a biaffine classifier architecture (Dozat and Manning, 2017) which operates directly on finetuned RoBERTa embeddings, our parser generates enhanced UD graphs by predicting the best dependency label (or absence of a dependency) for each pair of tokens in the sentence. We address label sparsity issues by replacing lexical items in relations with placeholders at prediction time, later retrieving them from the parse in a rule-based fashion. In addition, we ensure structural graph constraints using a simple set of heuristics. On the English blind test data, our system achieves a very high parsing accuracy, ranking 1st out of 10 with an ELAS F1 score of 88.94%
Die Honigbiene: ein Modellorganismus der Neurobiologie : Kognition, Krankheiten und die Moleküle des Lernens bei einem sozialen Insekt
Bienen sind wegen ihres Honigs beliebt und wegen ihrer Bestäubungsleistung wirtschaftlich unverzichtbar. Nicht nur in den Vereinigten Staaten nimmt das Bienensterben allerdings bisweilen dramatische Ausmaße an. Auch unsere heimischen Bienenvölker sind bedroht. Das hat eine Vielzahl von Forschungsprojekten zur Biologie der Biene und zu ihrem Schutz initiiert. Das Institut für Bienenkunde der Polytechnischen Gesellschaft und der Goethe-Universität in Oberursel untersucht in einem integrierten Forschungsansatz die kognitiven Leistungen von Bienen und wie sie durch Krankheit, Stress und Insektizidvergiftungen beeinträchtig werden
Applying Occam's Razor to Transformer-Based Dependency Parsing: What Works, What Doesn't, and What is Really Necessary
The introduction of pre-trained transformer-based contextualized word
embeddings has led to considerable improvements in the accuracy of graph-based
parsers for frameworks such as Universal Dependencies (UD). However, previous
works differ in various dimensions, including their choice of pre-trained
language models and whether they use LSTM layers. With the aims of
disentangling the effects of these choices and identifying a simple yet widely
applicable architecture, we introduce STEPS, a new modular graph-based
dependency parser. Using STEPS, we perform a series of analyses on the UD
corpora of a diverse set of languages. We find that the choice of pre-trained
embeddings has by far the greatest impact on parser performance and identify
XLM-R as a robust choice across the languages in our study. Adding LSTM layers
provides no benefits when using transformer-based embeddings. A multi-task
training setup outputting additional UD features may contort results. Taking
these insights together, we propose a simple but widely applicable parser
architecture and configuration, achieving new state-of-the-art results (in
terms of LAS) for 10 out of 12 diverse languages.Comment: 14 pages, 1 figure; camera-ready version for IWPT 202
Coordinate constructions in English enhanced universal dependencies: analysis and computational modeling
In this paper, we address the representation of coordinate constructions in Enhanced Universal Dependencies (UD), where relevant dependency links are propagated from conjunction heads to other conjuncts. English treebanks for enhanced UD have been created from gold basic dependencies using a heuristic rule-based converter, which propagates only core arguments. With the aim of determining which set of links should be propagated from a semantic perspective, we create a large-scale dataset of manually edited syntax graphs. We identify several systematic errors in the original data, and propose to also propagate adjuncts. We observe high inter-annotator agreement for this semantic annotation task. Using our new manually verified dataset, we perform the first principled comparison of rule-based and (partially novel) machine-learning based methods for conjunction propagation for English. We show that learning propagation rules is more effective than hand-designing heuristic rules. When using automatic parses, our neural graph-parser based edge predictor outperforms the currently predominant pipelines using a basic-layer tree parser plus converters
A corpus study of creating rule-based enhanced universal dependencies for German
In this paper, we present a first attempt at enriching German Universal Dependencies (UD) treebanks with enhanced dependencies. Similarly to the converter for English (Schuster and Manning, 2016), we develop a rule-based system for deriving enhanced dependencies from the basic layer, covering three linguistic phenomena: relative clauses, coordination, and raising/control. For quality control, we manually correct or validate a set of 196 sentences, finding that around 90% of added relations are correct. Our data analysis reveals that difficulties arise mainly due to inconsistencies in the basic layer annotations. We show that the English system is in general applicable to German data, but that adapting to the particularities of the German treebanks and language increases precision and recall by up to 10%. Comparing the application of our converter on gold standard dependencies vs. automatic parses, we find that F1 drops by around 10% in the latter setting due to error propagation. Finally, an enhanced UD parser trained on a converted treebank performs poorly when evaluated against our annotations, indicating that more work remains to be done to create gold standard enhanced German treebanks
RobertNLP at the IWPT 2021 shared task: simple enhanced UD parsing for 17 languages
This paper presents our multilingual dependency parsing system as used in the IWPT 2021 Shared Task on Parsing into Enhanced Universal Dependencies. Our system consists of an unfactorized biaffine classifier that operates directly on fine-tuned XLM-R embeddings and generates enhanced UD graphs by predicting the best dependency label (or absence of a dependency) for each pair of tokens. To avoid sparsity issues resulting from lexicalized dependency labels, we replace lexical items in relations with placeholders at training and prediction time, later retrieving them from the parse via a hybrid rule-based/machine-learning system. In addition, we utilize model ensembling at prediction time. Our system achieves high parsing accuracy on the blind test data, ranking 3rd out of 9 with an average ELAS F1 score of 86.97
MiST: a large-scale annotated resource and neural models for functions of modal verbs in English scientific text
Modal verbs (e.g., can, should or must) occur highly frequently in scientific articles. Decoding their function is not straightforward: they are often used for hedging, but they may also denote abilities and restrictions. Understanding their meaning is important for accurate information extraction from scientific text.To foster research on the usage of modals in this genre, we introduce the MIST (Modals In Scientific Text) dataset, which contains 3737 modal instances in five scientific domains annotated for their semantic, pragmatic, or rhetorical function. We systematically evaluate a set of competitive neural architectures on MIST. Transfer experiments reveal that leveraging non-scientific data is of limited benefit for modeling the distinctions in MIST. Our corpus analysis provides evidence that scientific communities differ in their usage of modal verbs, yet, classifiers trained on scientific data generalize to some extent to unseen scientific domains
- …