208 research outputs found

    Spherical Collapse in Chameleon Models

    Full text link
    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse depends on the initial comoving size of the inhomogeneity.Comment: matches printed versio

    Wick's Theorem at Finite Temperature

    Get PDF
    We consider Wick's Theorem for finite temperature and finite volume systems. Working at an operator level with a path ordered approach, we show that contrary to claims in the literature, expectation values of normal ordered products can be chosen to be zero and that results obtained are independent of volume. Thus the path integral and operator approaches to finite temperature and finite volume quantum field theories are indeed seen to be identical. The conditions under which normal ordered products have simple symmetry properties are also considered.Comment: 15 pages, LaTeX (no figures), available through anonymous ftp as LaTeX from ftp://euclid.tp.ph.ic.ac.uk/papers/95-6_18.tex or as LaTeX or postscript at http://euclid.tp.ph.ic.ac.uk/Papers/index.htm

    Chiral Symmetry restoration in the massive Thirring model at finite T and μ\mu: Dimensional reduction and the Coulomb gas

    Get PDF
    We show that in certain limits the (1+1)-dimensional massive Thirring model at finite temperature TT is equivalent to a one-dimensional Coulomb gas of charged particles at the same TT. This equivalence is then used to explore the phase structure of the massive Thirring model. For strong coupling and T>>mT>>m (the fermion mass) the system is shown to behave as a free gas of "molecules" (charge pairs in the Coulomb gas terminology) made of pairs of chiral condensates. This binding of chiral condensates is responsible for the restoration of chiral symmetry as TT\to\infty. In addition, when a fermion chemical potential μ0\mu\neq 0 is included, the analogy with a Coulomb gas still holds with μ\mu playing the role of a purely imaginary external electric field. For small TT and μ\mu we find a typical massive Fermi gas behaviour for the fermion density, whereas for large μ\mu it shows chiral restoration by means of a vanishing effective fermion mass. Some similarities with the chiral properties of low-energy QCD at finite TT and baryon chemical potential are discussed.Comment: 28 pages, 6 figures, better resolution figures are available upon reques

    Tachyon kinks on non BPS D-branes

    Get PDF
    We consider solitonic solutions of the DBI tachyon effective action for a non-BPS brane. When wrapped on a circle, these solutions are regular and have a finite energy. We show that in the decompactified limit, these solitons give Sen's infinitely thin finite energy kink -- interpreted as a BPS brane -- provided that some conditions on the potential hold. In particular, if for large TT the potential is exponential, V=eTaV = e^{-T^a}, then Sen's solution is only found for a<1a<1. For power-law potentials V=1/TbV = 1/T^b, one must have b>1b>1. If these conditions are not satisfied, we show that the lowest energy configuration is the unstable tachyon vacuum with no kinks. We examine the stability of the solitons and the spectrum of small perturbations.Comment: 16 pages, 2 figure

    Non-BPS Brane Cosmology

    Full text link
    We study cosmology on a BPS D3-brane evolving in the 10D SUGRA background describing a non-BPS brane. Initially the BPS brane is taken to be a probe whose dynamics we determine in the non-compact non-BPS background. The cosmology observed on the brane is of the FRW type with a scale factor S(τ)S(\tau). In this mirage cosmology approach, there is no self-gravity on the brane which cannot inflate. Self-gravity is then included by compactifying the background space-time. The low energy effective theory below the compactification scale is shown to be bi-metric, with matter coupling to a different metric than the geometrically induced metric on the brane. The geometrical scale factor on the brane is now S(τ)a(τ)S(\tau) a(\tau) where a(τ)a(\tau) arises from brane self-gravity. In this non-BPS scenario the brane generically inflates. We study the resulting inflationary scenario taking into account the fact that the non-BPS brane eventually decays on a time-scale much larger than the typical inflationary time-scale. After the decay, the theory ceases to be bi-metric and COBE normalization is used to estimate the string scale which is found to be of order 101410^{14} GeV.Comment: 20 pages, JHEP3.cl

    Oscillation damping of chiral string loops

    Full text link
    Chiral cosmic string loop tends to the stationary (vorton) configuration due to the energy loss into the gravitational and electromagnetic radiation. We describe the asymptotic behaviour of near stationary chiral loops and their fading to vortons. General limits on the gravitational and electromagnetic energy losses by near stationary chiral loops are found. For these loops we estimate the oscillation damping time. We present solvable examples of gravitational radiation energy loss by some chiral loop configurations. The analytical dependence of string energy with time is found in the case of the chiral ring with small amplitude radial oscillations.Comment: 10 pages, 2 figures. Accepted for publication in Physical Review

    Effective actions of a Gauss-Bonnet brane world with brane curvature terms

    Get PDF
    We consider a warped brane world scenario with two branes, Gauss-Bonnet gravity in the bulk, and brane localised curvature terms. When matter is present on both branes, we investigate the linear equations of motion and distinguish three regimes. At very high energy and for an observer on the positive tension brane, gravity is four dimensional and coupled to the brane bending mode in a Brans-Dicke fashion. The coupling to matter and brane bending on the negative tension brane is exponentially suppressed. In an intermediate regime, gravity appears to be five dimensional while the brane bending mode remains four dimensional. At low energy, matter on both branes couple to gravity for an observer on the positive tension brane, with a Brans-Dicke description similar to the 2--brane Randall-Sundrum setup. We also consider the zero mode truncation at low energy and show that the moduli approximation fails to reproduce the low energy action.Comment: 14 page

    Dynamics of Tachyon and Phantom Field beyond the Inverse Square Potentials

    Full text link
    We investigate the cosmological evolution of the tachyon and phantom-tachyon scalar field by considering the potential parameter Γ\Gamma(=VV"V2=\frac{V V"}{V'^2}) as a function of another potential parameter λ\lambda(=VκV3/2=\frac{V'}{\kappa V^{3/2}}), which correspondingly extends the analysis of the evolution of our universe from two-dimensional autonomous dynamical system to the three-dimension. It allows us to investigate the more general situation where the potential is not restricted to inverse square potential and .One result is that, apart from the inverse square potential, there are a large number of potentials which can give the scaling and dominant solution when the function Γ(λ)\Gamma(\lambda) equals 3/23/2 for one or some values of λ\lambda_{*} as well as the parameter λ\lambda_{*} satisfies condition Eq.(18) or Eq.(19). We also find that for a class of different potentials the dynamics evolution of the universe are actually the same and therefore undistinguishable.Comment: 8 pages, no figure, accepted by The European Physical Journal C(2010), online first, http://www.springerlink.com/content/323417h708gun5g8/?p=dd373adf23b84743b523a3fa249d51c7&pi=

    Tachyonic Inflation in a Warped String Background

    Full text link
    We analyze observational constraints on the parameter space of tachyonic inflation with a Gaussian potential and discuss some predictions of this scenario. As was shown by Kofman and Linde, it is extremely problematic to achieve the required range of parameters in conventional string compactifications. We investigate if the situation can be improved in more general compactifications with a warped metric and varying dilaton. The simplest examples are the warped throat geometries that arise in the vicinity of of a large number of space-filling D-branes. We find that the parameter range for inflation can be accommodated in the background of D6-branes wrapping a three-cycle in type IIA. We comment on the requirements that have to be met in order to realize this scenario in an explicit string compactification.Comment: Latex, JHEP class, 20 pages, 4 figures. v2: references added, small error in section 7 corrected, published versio
    corecore