48 research outputs found

    Exposure radius of a local coal mine in an Arctic coastal system; correlation between PAHs and mercury as a marker for a local mercury source

    Get PDF
    Mercury in the Arctic originates from emissions and releases at lower latitudes and, to a lesser extent, from local and regional sources. The relationship between mercury (Hg) and polycyclic aromatic hydrocarbons (PAHs) in sediment can be applied as an indicator of the mercury source. This research examines the Hg contamination gradient from a land-based coal mine to the surrounding coastal environment to quantify the impact of local sources. Total mercury and PAH (Σ(14)PAH) were measured in terrestrial and marine sediments as well as in marine biota. Samples were collected at the mine and two reference sites. Mercury and Σ(14)PAH concentrations in samples collected at the mine site were significantly higher than those at the reference sites. This was also found in the biota samples, although less pronounced. This work addresses the complexities of interpreting data concerning very low contaminant levels in a relatively pristine environment. A clear correlation between PAH and Hg concentration in sediment was found, although a large number of samples had levels below detection limits. PAH profiles, hierarchical clustering, and molecular diagnostic ratios provided further insight into the origin of PAHs and Hg, showing that signatures in sediments from the nearest reference site were more similar to the mine, which was not the case for the other reference site. The observed exposure radius from the mine was small and diluted from land to water to marine biota. Due to low contamination levels and variable PAH profiles, marine biota was less suitable for tracing the exposure radius for this local land-based Hg source. With an expected increase in mobility and availability of contaminants in the warming Arctic, changes in input of PAHs and Hg from land-based sources to the marine system need close monitoring. [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10661-021-09287-5

    Arctic atmospheric mercury:Sources and changes

    Get PDF
    Global anthropogenic and legacy mercury (Hg) emissions are the main sources of Arctic Hg contamination, primarily transported there via the atmosphere. This review summarizes the state of knowledge of the global anthropogenic sources of Hg emissions, and examines recent changes and source attribution of Hg transport and deposition to the Arctic using models. Estimated global anthropogenic Hg emissions to the atmosphere for 2015 were ~2220 Mg, ~20% higher than 2010. Global anthropogenic, legacy and geogenic Hg emissions were, respectively, responsible for 32%, 64% (wildfires: 6–10%) and 4% of the annual Arctic Hg deposition. Relative contributions to Arctic deposition of anthropogenic origin was dominated by sources in East Asia (32%), Commonwealth of Independent States (12%), and Africa (12%). Model results exhibit significant spatiotemporal variations in Arctic anthropogenic Hg deposition fluxes, driven by regional differences in Hg air transport routes, surface and precipitation uptake rates, and inter-seasonal differences in atmospheric circulation and deposition pathways. Model simulations reveal that changes in meteorology are having a profound impact on contemporary atmospheric Hg in the Arctic. Reversal of North Atlantic Oscillation phase from strongly negative in 2010 to positive in 2015, associated with lower temperature and more sea ice in the Canadian Arctic, Greenland and surrounding ocean, resulted in enhanced production of bromine species and Hg(0) oxidation and lower evasion of Hg(0) from ocean waters in 2015. This led to increased Hg(II) (and its deposition) and reduced Hg(0) air concentrations in these regions in line with High Arctic observations. However, combined changes in meteorology and anthropogenic emissions led to overall elevated modeled Arctic air Hg(0) levels in 2015 compared to 2010 contrary to observed declines at most monitoring sites, likely due to uncertainties in anthropogenic emission speciation, wildfire emissions and model representations of air-surface Hg fluxes

    Toward an assessment of the global inventory of present-day mercury releases to freshwater environments

    Get PDF
    Aquatic ecosystems are an essential component of the biogeochemical cycle of mercury (Hg), as inorganic Hg can be converted to toxic methylmercury (MeHg) in these environments and reemissions of elemental Hg rival anthropogenic Hg releases on a global scale. Quantification of effluent Hg releases to aquatic systems globally has focused on discharges to the global oceans, rather than contributions to freshwater systems that affect local exposures and risks associated with MeHg. Here we produce a first-estimate of sector-specific, spatially resolved global aquatic Hg discharges to freshwater systems. We compare our release estimates to atmospheric sources that have been quantified elsewhere. By analyzing available quantitative and qualitative information, we estimate that present-day global Hg releases to freshwater environments (rivers and lakes) associated with anthropogenic activities have a lower bound of ~1000 Mg· a−1. Artisanal and small-scale gold mining (ASGM) represents the single largest source, followed by disposal of mercury-containing products and domestic waste water, metal production, and releases from industrial installations such as chlor-alkali plants and oil refineries. In addition to these direct anthropogenic inputs, diffuse inputs from land management activities and remobilization of Hg previously accumulated in terrestrial ecosystems are likely comparable in magnitude. Aquatic discharges of Hg are greatly understudied and further constraining associated data gaps is crucial for reducing the uncertainties in the global biogeochemical Hg budget

    Current and future levels of mercury atmospheric pollution on global scale

    Get PDF
    An assessment of current and future emissions, air concentrations and atmospheric deposition of mercury world-wide are presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013) and future (2035) air concentrations and atmospheric deposition of this contaminant. The artisanal and small- scale gold mining, as well as combustion of fossil fuels (mainly coal) for energy and heat production in power plants and in industrial and residential boilers are the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 % and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 tonnes. The emissions in Asian countries, particularly in China and India dominate the total emissions of Hg. The current estimate of mercury emissions from natural processes (primary mercury emissions and re-emissions), including mercury depletion events, were estimated to be 5207 tonnes per year which represent nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %) followed by biomass burning (9 %). A comparison of the 2035 anthropogenic emissions estimated for 3 different scenarios with current anthriopogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best case scenario. Two global chemical transport models (GLEMOS and ECHMERIT) have been used for the evaluation of future Hg pollution levels considering future emission scenarios. Projections of future changes in Hg deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease of up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best case scenario. The EU GMOS project has proved to be a very important research instrument for supporting, first the scientific justification for the Minamata Convention, and then monitoring of the implementation of targets of this Convention, as well as, the EU Mercury Strategy. This project provided the state-of-the art with regard to the development of the latest emission inventories for mercury, future emission scenarios, dispersion modelling of atmospheric Hg on global and regional scale, and source – receptor techniques for Hg emission apportionment on a global scale.</p

    Global mercury emissions and distribution - an Arctic perspective

    Get PDF
    Mercury is a global environmental problem with both natural and anthropogenic sources. It is internationally recognized as a highly toxic and environmentally hazardous substance. The volatility of elemental mercury and of a number of mercury compounds enables that they can be transported over great distances via the atmosphere. In the polar regions, mercury accumulates in the food chain and poses a threat to the ecosystem and the inhabitants of the area. Atmospheric transport from lower latitudes is the primary source of mercury in the polar regions. Approximately 1/3 of this mercury originates from anthropogenic activities, the largest of which are coal burning power plants, small scale gold mining and non-ferrous metal production. This thesis examines the spatial distribution of global mercury emission data using different methods as well the environmental effects of local sources in the Arctic. To allow modelling of atmospheric transport of mercury and of mercury deposition, the emission datasets include, besides total mercury (HgT), three chemical forms of mercury: gaseous elemental mercury (Hg0), divalent mercury (Hg2+) and mercury bound to other particles (HgP). The spatially distributed emission data for the UN Environment Global Mercury Assessment 2018 is available in a 0.25°×0.25° resolution with three height classes (0–50, 50–150 and >150m). The spatially distributed emissions data are available to research groups and individual scientists for modelling mercury transport and deposition on a global and regional scale. The resulting datasets are also of use for effectiveness evaluation of the Minamata Convention on Mercury

    Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories

    Get PDF
    Mercury is a global pollutant that poses threats to ecosystem and human health. Due to its global transport, mercury contamination is found in regions of the Earth that are remote from major emissions areas, including the Polar regions. Global anthropogenic emission inventories identify important sectors and industries responsible for emissions at a national level; however, to be useful for air transport modelling, more precise information on the locations of emission is required. This paper describes the methodology applied, and the results of work that was conducted to assign anthropogenic mercury emissions to point sources as part of geospatial mapping of the 2010 global anthropogenic mercury emissions inventory prepared by AMAP/UNEP. Major point-source emission sectors addressed in this work account for about 850 tonnes of the emissions included in the 2010 inventory. This work allocated more than 90% of these emissions to some 4600 identified point source locations, including significantly more point source locations in Africa, Asia, Australia and South America than had been identified during previous work to geospatially-distribute the 2005 global inventory. The results demonstrate the utility and the limitations of using existing, mainly public domain resources to accomplish this work. Assumptions necessary to make use of selected online resources are discussed, as are artefacts that can arise when these assumptions are applied to assign (national-sector) emissions estimates to point sources in various countries and regions. Notwithstanding the limitations of the available information, the value of this procedure over alternative methods commonly used to geo-spatially distribute emissions, such as use of 'proxy' datasets to represent emissions patterns, is illustrated. Improvements in information that would facilitate greater use of these methods in future work to assign emissions to point-sources are discussed. These include improvements to both national (geo-referenced) emission inventories and also to other resources that can be employed when such national inventories are lacking. (C) 2015 Elsevier Ltd. All rights reserved

    The shore is the limit: Marine spatial protection in Antarctica under Annex V of the Environmental Protocol to the Antarctic Treaty

    Get PDF
    This paper examines the role of the Protocol on Environmental Protection to the Antarctic Treaty in relation to marine spatial protection, with a focus on the designation of marine or partially marine areas as Antarctic Specially Protected or Managed Areas (ASPAs and ASMAs). For an improved understanding of this ASPA and ASMA practice, the competence arrangements between the Antarctic Treaty Consultative Meeting (ATCM) and the Commission on the Conservation of Antarctic Marine Living Resources (CCAMLR) are also examined. Five categories of ASPAs and ASMAs are identified according to their location and values relative to marine environments and ecosystems. A series of maps illustrate the outcomes of this inventory. The analysis and maps show that the use of ASPAs and ASMAs in marine or partially marine areas has been limited, although such protection is clearly within the mandate and competence of the Antarctic Treaty Consultative Parties. In part to explain these outcomes, the paper examines some recent ATCM discussions on marine protection issues. It is concluded that stronger spatial marine protection through ASPAs and ASMAs, as well as a strengthened integrated protection of the marine environment, requires stronger collaboration between the ATCM and CCAMLR, as well as mutual respect between these bodies
    corecore