487 research outputs found
Lassoing and corraling rooted phylogenetic trees
The construction of a dendogram on a set of individuals is a key component of
a genomewide association study. However even with modern sequencing
technologies the distances on the individuals required for the construction of
such a structure may not always be reliable making it tempting to exclude them
from an analysis. This, in turn, results in an input set for dendogram
construction that consists of only partial distance information which raises
the following fundamental question. For what subset of its leaf set can we
reconstruct uniquely the dendogram from the distances that it induces on that
subset. By formalizing a dendogram in terms of an edge-weighted, rooted
phylogenetic tree on a pre-given finite set X with |X|>2 whose edge-weighting
is equidistant and a set of partial distances on X in terms of a set L of
2-subsets of X, we investigate this problem in terms of when such a tree is
lassoed, that is, uniquely determined by the elements in L. For this we
consider four different formalizations of the idea of "uniquely determining"
giving rise to four distinct types of lassos. We present characterizations for
all of them in terms of the child-edge graphs of the interior vertices of such
a tree. Our characterizations imply in particular that in case the tree in
question is binary then all four types of lasso must coincide
Spectral Properties of Coupled Bose-Einstein Condensates
We investigate the energy spectrum structure of a system of two (identical)
interacting bosonic wells occupied by N bosons within the Schwinger realization
of the angular momentum. This picture enables us to recognize the symmetry
properties of the system Hamiltonian H and to use them for characterizing the
energy eigenstates. Also, it allows for the derivation of the single-boson
picture which is shown to be the background picture naturally involved by the
secular equation for H. After deriving the corresponding eigenvalue equation,
we recast it in a recursive N-dependent form which suggests a way to generate
the level doublets (characterizing the H spectrum) via suitable inner
parameters. Finally, we show how the presence of doublets in the spectrum
allows to recover, in the classical limit, the symmetry breaking effect that
characterizes the system classically.Comment: 8 pages, 3 figures; submitted to Phys. Rev. A. The present extended
form replaces the first version in the letter forma
Interaction of matter-wave gap solitons in optical lattices
We study mobility and interaction of gap solitons in a Bose-Einstein
condensate (BEC) confined by an optical lattice potential. Such localized
wavepackets can exist only in the gaps of the matter-wave band-gap spectrum and
their interaction properties are shown to serve as a measure of discreteness
imposed onto a BEC by the lattice potential. We show that inelastic collisions
of two weakly localized near-the-band-edge gap solitons provide simple and
effective means for generating strongly localized in-gap solitons through
soliton fusion.Comment: 12 pages, 7 figure
Analysis of Localization Phenomena in Weakly Interacting Disordered Lattice Gases
Disorder plays a crucial role in many systems particularly in solid state
physics. However, the disorder in a particular system can usually not be chosen
or controlled. We show that the unique control available for ultracold atomic
gases may be used for the production and observation of disordered quantum
degenerate gases. A detailed analysis of localization effects for two possible
realizations of a disordered potential is presented. In a theoretical analysis
clear localization effects are observed when a superlattice is used to provide
a quasiperiodic disorder. The effects of localization are analyzed by
investigating the superfluid fraction and the localization length within the
system. The theoretical analysis in this paper paves a clear path for the
future observation of Anderson-like localization in disordered quantum gases.Comment: 9 pages, 13 figure
Generic model of an atom laser
We present a generic model of an atom laser by including a pump and loss term
in the Gross-Pitaevskii equation. We show that there exists a threshold for the
pump above which the mean matter field assumes a non-vanishing value in
steady-state. We study the transient regime of this atom laser and find
oscillations around the stationary solution even in the presence of a loss
term. These oscillations are damped away when we introduce a position dependent
loss term. For this case we present a modified Thomas-Fermi solution that takes
into account the pump and loss. Our generic model of an atom laser is analogous
to the semi-classical theory of the laser.Comment: 15 pages, including 5 figures, submitted to Phys. Rev. A, revised
manuscript, file also available at
http://www.physik.uni-ulm.de/quan/users/kne
Thermodynamic properties of thin films of superfluid 3He-A
The pairing correlations in superfluid He-3 are strongly modified by
quasiparticle scattering off a surface or an interface. We present theoretical
results and predictions for the order parameter, the quasiparticle excitation
spectrum and the free energy for thin films of superfluid He-3. Both specular
and diffuse scattering by a substrate are considered, while the free surface is
assumed to be a perfectly reflecting specular boundary. The results are based
on self-consistent calculations of the order parameter and quasiparticle
excitation spectrum at zero pressure. We obtain new results for the phase
diagram, free energy, entropy and specific heat of thin films of superfluid
He-3.Comment: Replaced with an updated versio
Langevin equations for interacting fermions and Cooper-like pairing in trapped one-dimensional fermions
Momentum correlations in a one-dimensional equilibrium ensemble of trapped fermions, with a point interaction between particles of opposite spin have been studied. In the degenerate regime correlations were observed between fermions with opposite spins and momenta, similar to Cooper pairing. These correlations appear as soon as the temperature is below the Fermi energy, which is a much less stringent condition than that of the BCS transition proper. Calculations are carried out in both perturbative and non-perturbative regimes. To achieve the latter. it is shown that interacting fermionic dynamics may be solved as a stochastic linear transformation of Grassmann algebra generators, much in the way random c-number paths are introduced in the conventional quantum stochastics of bosons. Importantly, the method thus emerging is inherently free of the sign problem
The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription
The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth
Nonlinear Waves in Bose-Einstein Condensates: Physical Relevance and Mathematical Techniques
The aim of the present review is to introduce the reader to some of the
physical notions and of the mathematical methods that are relevant to the study
of nonlinear waves in Bose-Einstein Condensates (BECs). Upon introducing the
general framework, we discuss the prototypical models that are relevant to this
setting for different dimensions and different potentials confining the atoms.
We analyze some of the model properties and explore their typical wave
solutions (plane wave solutions, bright, dark, gap solitons, as well as
vortices). We then offer a collection of mathematical methods that can be used
to understand the existence, stability and dynamics of nonlinear waves in such
BECs, either directly or starting from different types of limits (e.g., the
linear or the nonlinear limit, or the discrete limit of the corresponding
equation). Finally, we consider some special topics involving more recent
developments, and experimental setups in which there is still considerable need
for developing mathematical as well as computational tools.Comment: 69 pages, 10 figures, to appear in Nonlinearity, 2008. V2: new
references added, fixed typo
Altered T Cell Memory and Effector Cell Development in Chronic Lymphatic Filarial Infection That Is Independent of Persistent Parasite Antigen
Chronic lymphatic filarial (LF) infection is associated with suppression of parasite-specific T cell responses that persist even following elimination of infection. While several mechanisms have been implicated in mediating this T cell specific downregulation, a role for alterations in the homeostasis of T effector and memory cell populations has not been explored. Using multiparameter flow cytometry, we investigated the role of persistent filarial infection on the maintenance of T cell memory in patients from the filarial-endemic Cook Islands. Compared to filarial-uninfected endemic normals (EN), microfilaria (mf) positive infected patients (Inf) had a reduced CD4 central memory (TCM) compartment. In addition, Inf patients tended to have more effector memory cells (TEM) and fewer effector cells (TEFF) than did ENs giving significantly smaller TEFF βΆ TEM ratios. These contracted TCM and TEFF populations were still evident in patients previously mf+ who had cleared their infection (CLInf). Moreover, the density of IL-7RΞ±, necessary for T memory cell maintenance (but decreased in T effector cells), was significantly higher on memory cells of Inf and CLInf patients, although there was no evidence for decreased IL-7 or increased soluble IL7-RΞ±, both possible mechanisms for signaling defects in memory cells. However, effector cells that were present in Inf and CLInf patients had lower percentages of HLA-DR suggesting impaired function. These changes in T cell populations appear to reflect chronicity of infection, as filarial-infected children, despite the presence of active infection, did not show alterations in the frequencies of these T cell phenotypes. These data indicate that filarial-infected patients have contracted TCM compartments and a defect in effector cell development, defects that persist even following clearance of infection. The fact that these global changes in memory and effector cell compartments do not yet occur in infected children makes early treatment of LF even more crucial
- β¦