1,430 research outputs found

    Department "SPARC Detectors" in the FAIR@GSI Project

    Get PDF

    Engineering Quantum States, Nonlinear Measurements, and Anomalous Diffusion by Imaging

    Full text link
    We show that well-separated quantum superposition states, measurements of strongly nonlinear observables, and quantum dynamics driven by anomalous diffusion can all be achieved for single atoms or molecules by imaging spontaneous photons that they emit via resonance florescence. To generate anomalous diffusion we introduce continuous measurements driven by L\'evy processes, and prove a number of results regarding their properties. In particular we present strong evidence that the only stable L\'evy density that can realize a strictly continuous measurement is the Gaussian.Comment: revtex4-1, 17 pages, 7 eps figure

    Study of composition of cosmic rays with energy .7 E 3 Ee

    Get PDF
    The longitudinal shower development of extensive air showers (EAS) observed in the fly's eye is used to determine the distribution of X sub max, the depth in the atmosphere of the EAS maximum. Data and Monte Carlo simulations of proton and iron primaries are compared. A substantial contribution from light primaries is noted

    Single-particle-sensitive imaging of freely propagating ultracold atoms

    Full text link
    We present a novel imaging system for ultracold quantum gases in expansion. After release from a confining potential, atoms fall through a sheet of resonant excitation laser light and the emitted fluorescence photons are imaged onto an amplified CCD camera using a high numerical aperture optical system. The imaging system reaches an extraordinary dynamic range, not attainable with conventional absorption imaging. We demonstrate single-atom detection for dilute atomic clouds with high efficiency where at the same time dense Bose-Einstein condensates can be imaged without saturation or distortion. The spatial resolution can reach the sampling limit as given by the 8 \mu m pixel size in object space. Pulsed operation of the detector allows for slice images, a first step toward a 3D tomography of the measured object. The scheme can easily be implemented for any atomic species and all optical components are situated outside the vacuum system. As a first application we perform thermometry on rubidium Bose-Einstein condensates created on an atom chip.Comment: 24 pages, 10 figures. v2: as publishe

    Narrow 0\u3csup\u3e+\u3c/sup\u3e state in \u3csup\u3e20\u3c/sup\u3eNe and 0\u3csub\u3e6\u3c/sub\u3e\u3csup\u3e+\u3c/sup\u3e and 0\u3csub\u3e7\u3c/sub\u3e\u3csup\u3e+\u3c/sup\u3e rotational bands

    Get PDF
    A reanalysis of old data removes the (0+,2+) ambiguity for a very narrow state at Ex(20Ne)=11.55 MeV and gives a unique 0+ assignment. Such a 0+ state corresponds well to a predicted state at 11.494 MeV of unusually small reduced widths for decay to both the ground and first excited state of 16O. This new 0+ state is a better 06+ band head for the 8p-4h states at 15.159 MeV (6+) and 18.538 MeV (8+) than the currently accepted 0+ state at 12.44 MeV. Possible 2+ and 4+ members are considered. The higher 0+ level at Ex=12.44 starts a new 07+ band, and candidates for this band are critically discussed

    Ultrastructure of the intact skeleton of the human erythrocyte membrane.

    Full text link

    Desert Ants Learn Vibration and Magnetic Landmarks

    Get PDF
    The desert ants Cataglyphis navigate not only by path integration but also by using visual and olfactory landmarks to pinpoint the nest entrance. Here we show that Cataglyphis noda can additionally use magnetic and vibrational landmarks as nest-defining cues. The magnetic field may typically provide directional rather than positional information, and vibrational signals so far have been shown to be involved in social behavior. Thus it remains questionable if magnetic and vibration landmarks are usually provided by the ants' habitat as nest-defining cues. However, our results point to the flexibility of the ants' navigational system, which even makes use of cues that are probably most often sensed in a different context

    An Atom Laser with a cw Output Coupler

    Full text link
    We demonstrate a continuous output coupler for magnetically trapped atoms. Over a period of up to 100 ms a collimated and monoenergetic beam of atoms is continuously extracted from a Bose- Einstein condensate. The intensity and kinetic energy of the output beam of this atom laser are controlled by a weak rf-field that induces spin flips between trapped and untrapped states. Furthermore, the output coupler is used to perform a spectroscopic measurement of the condensate, which reveals the spatial distribution of the magnetically trapped condensate and allows manipulation of the condensate on a micrometer scale.Comment: 4 pages, 4 figure

    Strategies for Real-Time Position Control of a Single Atom in Cavity QED

    Get PDF
    Recent realizations of single-atom trapping and tracking in cavity QED open the door for feedback schemes which actively stabilize the motion of a single atom in real time. We present feedback algorithms for cooling the radial component of motion for a single atom trapped by strong coupling to single-photon fields in an optical cavity. Performance of various algorithms is studied through simulations of single-atom trajectories, with full dynamical and measurement noise included. Closed loop feedback algorithms compare favorably to open-loop "switching" analogs, demonstrating the importance of applying actual position information in real time. The high optical information rate in current experiments enables real-time tracking that approaches the standard quantum limit for broadband position measurements, suggesting that realistic active feedback schemes may reach a regime where measurement backaction appreciably alters the motional dynamics.Comment: 12 pages, 10 figures, submitted to J. Opt. B Quant. Semiclass. Op

    Diffusion Resonances in Action Space for an Atom Optics Kicked Rotor with Decoherence

    Full text link
    We numerically investigate momentum diffusion rates for the pulse kicked rotor across the quantum to classical transition as the dynamics are made more macroscopic by increasing the total system action. For initial and late time rates we observe an enhanced diffusion peak which shifts and scales with changing kick strength, and we also observe distinctive peaks around quantum resonances. Our investigations take place in the context of a system of ultracold atoms which is coupled to its environment via spontaneous emission decoherence, and the effects should be realisable in ongoing experiments.Comment: 4 Pages, RevTeX 4, 5 Figures. Updated Figures, Minor Changes to text, Corrected Reference
    • …
    corecore