56 research outputs found

    Large Differences in Publicly Visible Health Behaviours across Two Neighbourhoods of the Same City

    Get PDF
    Background: There are socioeconomic disparities in the likelihood of adopting unhealthy behaviours, and success at giving them up. This may be in part because people living in deprived areas are exposed to greater rates of unhealthy behaviour amongst those living around them. Conventional self-report surveys do not capture these differences in exposure, and more ethological methods are required in order to do so. Methodology/Principal Findings: We performed 12 hours of direct behavioural observation in the streets of two neighbourhoods of the same city which were similar in most regards, except that one was much more socioeconomically deprived than the other. There were large differences in the publicly visible health behaviours observed. In the deprived neighbourhood, we observed 266 more adults smoking (rate ratio 3.44), 53 more adults drinking alcohol (rate ratio not calculable), and 38 fewer adults running (rate ratio 0.23), than in the affluent neighbourhood. We used data from the Health Survey for England to calculate the differences we ought to expect to have seen given the individual-level socioeconomic characteristics of the residents. The observed disparities between the two neighbourhoods were considerably greater than this null model predicted. There were also different patterns of smoking in proximity to children in the two neighbourhoods. Conclusions/Significance: The differences in observed smoking, drinking alcohol, and physical activity between these tw

    Tandem E2F Binding Sites in the Promoter of the p107 Cell Cycle Regulator Control p107 Expression and Its Cellular Functions

    Get PDF
    The retinoblastoma tumor suppressor (Rb) is a potent and ubiquitously expressed cell cycle regulator, but patients with a germline Rb mutation develop a very specific tumor spectrum. This surprising observation raises the possibility that mechanisms that compensate for loss of Rb function are present or activated in many cell types. In particular, p107, a protein related to Rb, has been shown to functionally overlap for loss of Rb in several cellular contexts. To investigate the mechanisms underlying this functional redundancy between Rb and p107 in vivo, we used gene targeting in embryonic stem cells to engineer point mutations in two consensus E2F binding sites in the endogenous p107 promoter. Analysis of normal and mutant cells by gene expression and chromatin immunoprecipitation assays showed that members of the Rb and E2F families directly bound these two sites. Furthermore, we found that these two E2F sites controlled both the repression of p107 in quiescent cells and also its activation in cycling cells, as well as in Rb mutant cells. Cell cycle assays further indicated that activation of p107 transcription during S phase through the two E2F binding sites was critical for controlled cell cycle progression, uncovering a specific role for p107 to slow proliferation in mammalian cells. Direct transcriptional repression of p107 by Rb and E2F family members provides a molecular mechanism for a critical negative feedback loop during cell cycle progression and tumorigenesis. These experiments also suggest novel therapeutic strategies to increase the p107 levels in tumor cells

    A randomised trial of the effect of postal reminders on attendance for breast screening

    Get PDF
    This study was supported financially by National Cancer Screening Programmes. Stephen Duffy contributed to this study as part of the programme of the Policy Reminders and breast screening attendance BRITISH JOURNAL OF CANCER www.bjcancer.com | DOI:10.1038/bjc.2015.451 175 Research Unit in Cancer Awareness, Screening and Early Diagnosis, which receives funding for a research programme from the Department of Health Policy Research Programme, grant number 106/0001. It is a collaboration between researchers from seven institutions (Queen Mary University of London, UCL, King’s College London, London School of Hygiene and Tropical Medicine, Hull York Medical School, Durham University and Peninsula Medical School

    Bioinformatic and statistical analysis of the optic nerve head in a primate model of ocular hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nonhuman primate model of glaucomatous optic neuropathy most faithfully reproduces the human disease. We used high-density oligonucleotide arrays to investigate whole genome transcriptional changes occurring at the optic nerve head during primate experimental glaucoma.</p> <p>Results</p> <p>Laser scarification of the trabecular meshwork of cynomolgus macaques produced elevated intraocular pressure that was monitored over time and led to varying degrees of damage in different samples. The macaques were examined clinically before enucleation and the myelinated optic nerves were processed post-mortem to determine the degree of neuronal loss. Global gene expression was examined in dissected optic nerve heads with Affymetrix GeneChip microarrays. We validated a subset of differentially expressed genes using qRT-PCR, immunohistochemistry, and immuno-enriched astrocytes from healthy and glaucomatous human donors. These genes have previously defined roles in axonal outgrowth, immune response, cell motility, neuroprotection, and extracellular matrix remodeling.</p> <p>Conclusion</p> <p>Our findings show that glaucoma is associated with increased expression of genes that mediate axonal outgrowth, immune response, cell motility, neuroprotection, and ECM remodeling. These studies also reveal that, as glaucoma progresses, retinal ganglion cell axons may make a regenerative attempt to restore lost nerve cell contact.</p
    corecore