274 research outputs found

    Not just fractal surfaces, but surface fractal aggregates: Derivation of the expression for the structure factor and its applications

    Get PDF
    Densely packed surface fractal aggregates form in systems with high local volume fractions of particles with very short diffusion lengths, which effectively means that particles have little space to move. However, there are no prior mathematical models, which would describe scattering from such surface fractal aggregates and which would allow the subdivision between inter- and intraparticle interferences of such aggregates. Here, we show that by including a form factor function of the primary particles building the aggregate, a finite size of the surface fractal interfacial sub-surfaces can be derived from a structure factor term. This formalism allows us to define both a finite specific surface area for fractal aggregates and the fraction of particle interfacial sub-surfaces at the perimeter of an aggregate. The derived surface fractal model is validated by comparing it with an ab initio approach that involves the generation of a "brick-in-a-wall" von Koch type contour fractals. Moreover, we show that this approach explains observed scattering intensities from in situ experiments that followed gypsum (CaSO4 · 2H2O) precipitation from highly supersaturated solutions. Our model of densely packed "brick-in-a-wall" surface fractal aggregates may well be the key precursor step in the formation of several types of mosaic- and meso-crystals

    Formation of calcium sulfate through the aggregation of sub-3 nanometre primary species

    Get PDF
    The formation pathways of gypsum remain uncertain. Here, using truly in situ and fast time-resolved small-angle X-ray scattering, we quantify the four-stage solution-based nucleation and growth of gypsum (CaSO4 ·2H2O), an important mineral phase on Earth and Mars. The reaction starts through the fast formation of well-defined, primary species of <3 nm in length (stage I), followed in stage II by their arrangement into domains. The variations in volume fractions and electron densities suggest that these fast forming primary species contain Ca-SO4-cores that self-assemble in stage III into large aggregates. Within the aggregates these well-defined primary species start to grow (stage IV), and fully crystalize into gypsum through a structural rearrangement. Our results allow for a quantitative understanding of how natural calcium sulfate deposits may form on Earth and how a terrestrially unstable phase-like bassanite can persist at low-water activities currently dominating the surface of Mars

    Ferrihydrite formation : the role of Fe13 Keggin clusters

    Get PDF
    Ferrihydrite is the most common iron oxyhydroxide found in soil and is a key sequester of contaminants in the environment. Ferrihydrite formation is also a common component of many treatment processes for clean-up of industrial effluents. Here we characterize ferrihydrite formation during the titration of an acidic ferric nitrate solution with NaOH. In-situ SAXS measurements supported by ex situ TEM indicate that initailly Fe13 Keggin clusters (radius ~0.45 nm) form in solution at pH 0.5 - 1.5, and are persistant for at least 18 days. The Fe13 clusters begin to aggregate above ~ pH 1, initially forming highly linear structures. Above pH ~ 2 densification of the aggregates occurs in conjunction with precipiation of low molecular weight Fe(III) speices (e.g. monomers, dimers) to form mass fractal aggregates of ferrihydrite nanoparticles (~ 3 nm) in which the Fe13 Keggin motif is preserved. SAXS analysis indicates the ferrihydrite particles have a core-shell structure consisting of a Keggin center surrounded by a Fe-depleted shell, supporting the surface depleted model of ferrihydrite. Overall, we present the first direct evidence for the role of Fe13 clusters in the pathway of ferrihydrite formation during base hydrolysis, showing clear structural continuity from isolated Fe13 Keggins to the ferrihydrite particle structure. The results have direct relevance to the fundamental understanding of ferrihydrite formation in environmental, engineered and industrial processes

    An Amorphous Teflate Doped Aluminium Chlorofluoride: A Solid Lewis‐Superacid for the Dehydrofluorination of Fluoroalkanes

    Get PDF
    An anion‐doped aluminium chlorofluoride AlCl0.1F2.8(OTeF5)0.1 (ACF‐teflate) was synthesized. The material contains pentafluoroorthotellurate (teflate) groups, which mimic fluoride ions electronically, but are sterically more demanding. They are embedded into the amorphous structure. The latter was studied by PDF analysis, EXAFS data and MAS NMR spectroscopy. The mesoporous powder is a Lewis superacid, and ATR‐IR spectra of adsorbed CD3CN reveal a blue‐shift of the adsorption band by 73 cm−1, which is larger than the shift for SbF5. Remarkably, ACF‐teflate catalyzes dehydrofluorination reactions of monofluoroalkanes to yield olefins in C6D6. In these cases, no Friedel‐Crafts products were formed

    Nonclassical Crystallization Pathway of Transition Metal Phosphate Compounds

    Get PDF
    Here, we elucidate nonclassical multistep crystallization pathways of transition metal phosphates from aqueous solutions. We followed precipitation processes of M-struvites, NH4MPO4·6H2O, and M-phosphate octahydrates, M3(PO4)2·8H2O, where M = Ni, Co, or NixCo1-x, by using in situ scattering and spectroscopy-based techniques, supported by elemental mass spectrometry analyses and advanced electron microscopy. Ni and Co phosphates crystallize via intermediate colloidal amorphous nanophases, which change their complex structures while agglomerating, condensing, and densifying throughout the extended reaction times. We reconstructed the three-dimensional morphology of these precursors by employing cryo-electron tomography (cryo-ET). We found that the complex interplay between metastable amorphous colloids and protocrystalline units determines the reaction pathways. Ultimately, the same crystalline structure, such as struvite, is formed. However, the multistep process stages vary in complexity and can last from a few minutes to several hours depending on the selected transition metal(s), their concentration, and the Ni/Co ratio.</p

    Advanced Technology Composite Fuselage - Manufacturing

    Get PDF
    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program is to develop the technology required for cost-and weight-efficient use of composite materials in transport fuselage structure. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements, and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of stringer-stiffened and sandwich skin panels. Circumferential and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant-section stiffening elements. Drape forming was chosen for stringers and other stiffening elements cocured to skin structures. Significant process development efforts included AFP, braiding, RTM, autoclave cure, and core blanket fabrication for both sandwich and stiffened-skin structure. Outer-mold-line and inner-mold-line tooling was developed for sandwich structures and stiffened-skin structure. The effect of design details, process control and tool design on repeatable, dimensionally stable, structure for low cost barrel assembly was assessed. Subcomponent panels representative of crown, keel, and side quadrant panels were fabricated to assess scale-up effects and manufacturing anomalies for full-scale structures. Manufacturing database including time studies, part quality, and manufacturing plans were generated to support the development of designs and analytical models to access cost, structural performance, and dimensional tolerance

    Formation of Silica-Lysozyme Composites Through Co-Precipitation and Adsorption

    Get PDF
    Interactions between silica and proteins are crucial for the formation of biosilica and the production of novel functional hybrid materials for a range of industrial applications. The proteins control both precipitation pathway and the properties of the resulting silica-organic composites. Here we present data on the formation of silica-lysozyme composites through two different synthesis approaches (co-precipitation vs. adsorption) and show that the chemical and structural properties of these composites, when analyzed using a combination of synchrotron-based scattering (total scattering and SAXS), spectroscopic, electron microscopy and potentiometric methods vary dramatically. We document that while lysozyme was not incorporated into nor did its presence alter the molecular structure of silica, it strongly enhanced the aggregation of silica particles due to electrostatic and potentially hydrophobic interactions, leading to the formation of composites with characteristics differing from pure silica. The differences increased with increasing lysozyme content for both synthesis approaches. Yet, the absolute changes differ substantially between the two sets of composites, as lysozyme did not just affect aggregation during co-precipitation but also particle growth and likely polymerization during co-precipitation. Our results improve the fundamental understanding of how organic macromolecules interact with dissolved and nanoparticulate silica and how these interactions control the formation pathway of silica-organic composites from sodium silicate solutions, a widely available and cheap starting material

    Physicochemical and Additive Controls on the Multistep Precipitation Pathway of Gypsum

    Get PDF
    Synchrotron-based small- and wide-angle X-ray scattering (SAXS/WAXS) was used to examine in situ the precipitation of gypsum (CaSO4·2H2O) from solution. We determined the role of (I) supersaturation, (II) temperature and (III) additives (Mg2+ and citric acid) on the precipitation mechanism and rate of gypsum. Detailed analysis of the SAXS data showed that for all tested supersaturations and temperatures the same nucleation pathway was maintained, i.e., formation of primary particles that aggregate and transform/re-organize into gypsum. In the presence of Mg2+ more primary particle are formed compared to the pure experiment, but the onset of their transformation/reorganization was slowed down. Citrate reduces the formation of primary particles resulting in a longer induction time of gypsum formation. Based on the WAXS data we determined that the precipitation rate of gypsum increased 5-fold from 4 to 40 °C, which results in an effective activation energy of ~30 kJ·mol−1. Mg2+ reduces the precipitation rate of gypsum by more than half, most likely by blocking the attachment sites of the growth units, while citric acid only weakly hampers the growth of gypsum by lowering the effective supersaturation. In short, our results show that the nucleation mechanism is independent of the solution conditions and that Mg2+ and citric acid influence differently the nucleation pathway and growth kinetics of gypsum. These insights are key for further improving our ability to control the crystallization process of calcium sulphate
    • 

    corecore