63 research outputs found
Recommended from our members
Extreme dust storm over the eastern Mediterranean in September 2015: Satellite, lidar, and surface observations in the Cyprus region
A record-breaking dust storm originating from desert regions in northern Syria and Iraq occurred over the eastern Mediterranean in September 2015. In this contribution of a series of two articles (part 1, observations; part 2, atmospheric modeling), we provide a comprehensive overview of the aerosol conditions during this extreme dust outbreak in the Cyprus region. These observations are based on satellite observations (MODIS, moderate resolution imaging spectroradiometer) of aerosol optical thickness (AOT) and Ångström exponent, surface particle mass (PM10) concentrations measured at four sites in Cyprus, visibility observations at three airports in southern Cyprus and corresponding conversion products (particle extinction coefficient, dust mass concentrations), EARLINET (European Aerosol Research Lidar Network) lidar observations of dust vertical layering over Limassol, particle optical properties (backscatter, extinction, lidar ratio, linear depolarization ratio), and derived profiles of dust mass concentrations. Maximum 550 nm AOT exceeded values of 5.0, according to MODIS, and the mass loads were correspondingly > 10 g m−2 over Larnaca and Limassol during the passage of an extremely dense dust front on 8 September 2015. Hourly mean PM10 values were close to 8000 µg m−3 and the observed meteorological optical range (visibility) was reduced to 300–750 m at Larnaca and Limassol. The visibility observations suggest peak values of the near-surface total suspended particle (TSP) extinction coefficients of 6000 Mm−1 and thus TSP mass concentrations of 10 000 µg m−3. The Raman polarization lidar observations mainly indicated a double layer structure of the dust plumes (reaching to about 4 km height), pointing to at least two different dust source regions. Dust particle extinction coefficients (532 nm) already exceeded 1000 Mm−1 and the mass concentrations reached 2000 µg m−3 in the elevated dust layers on 7 September, more than 12 h before the peak dust front on 8 September reached the Limassol lidar station around local noon. Typical Middle Eastern dust lidar ratios around 40 sr were observed in the dense dust plumes. The particle depolarization ratio decreased from around 0.3 in the lofted dense dust layers to 0.2 at the end of the dust period (11 September), indicating an increasing impact of anthropogenic haze
Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements
Aerosols that are efficient ice-nucleating particles (INPs) are crucial for the formation of cloud ice via heterogeneous nucleation in the atmosphere. The distribution of INPs on a large spatial scale and as a function of height determines their impact on clouds and climate. However, in situ measurements of INPs provide sparse coverage over space and time. A promising approach to address this gap is to retrieve INP concentration profiles by combining particle concentration profiles derived by lidar measurements with INP efficiency parameterizations for different freezing mechanisms (immersion freezing, deposition nucleation). Here, we assess the feasibility of this new method for both ground-based and spaceborne lidar measurements, using in situ observations collected with unmanned aerial vehicles (UAVs) and subsequently analyzed with the FRIDGE (FRankfurt Ice nucleation Deposition freezinG Experiment) INP counter from an experimental campaign at Cyprus in April 2016. Analyzing five case studies we calculated the cloud-relevant particle number concentrations using lidar measurements (n250,dry with an uncertainty of 20 % to 40 % and Sdry with an uncertainty of 30 % to 50 %), and we assessed the suitability of the different INP parameterizations with respect to the temperature range and the type of particles considered. Specifically, our analysis suggests that our calculations using the parameterization of Ullrich et al. (2017) (applicable for the temperature range −50 to −33 ∘C) agree within 1 order of magnitude with the in situ observations of nINP; thus, the parameterization of Ullrich et al. (2017) can efficiently address the deposition nucleation pathway in dust-dominated environments. Additionally, our calculations using the combination of the parameterizations of DeMott et al. (2015, 2010) (applicable for the temperature range −35 to −9 ∘C) agree within 2 orders of magnitude with the in situ observations of INP concentrations (nINP) and can thus efficiently address the immersion/condensation pathway of dust and nondust particles. The same conclusion is derived from the compilation of the parameterizations of DeMott et al. (2015) for dust and Ullrich et al. (2017) for soot.Peer reviewe
Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign
Air quality forecast systems need reliable and accurate representations of the planetary boundary layer (PBL) to perform well. An important question is how accurately numerical weather prediction models can reproduce conditions in diverse synoptic flow types. Here, observations from the summer 2014 HygrA-CD (Hygroscopic Aerosols to Cloud Droplets) experimental campaign are used to validate simulations from the Weather Research and Forecasting (WRF) model over the complex, urban terrain of the Greater Athens Area. Three typical atmospheric flow types were identified during the 39-day campaign based on 2-day backward trajectories: Continental, Etesians, and Saharan. It is shown that the numerical model simulations differ dramatically depending on the PBL scheme, atmospheric dynamics, and meteorological parameter (e.g., 2-m air temperature). Eight PBL schemes from WRF version 3.4 are tested with daily simulations on an inner domain at 1-km grid spacing. Near-surface observations of 2-m air temperature and relative humidity and 10-m wind speed are collected from multiple meteorological stations. Estimates of the PBL height come from measurements using a multiwavelength Raman lidar, with an adaptive extended Kalman filter technique. Vertical profiles of atmospheric variables are obtained from radiosonde launches, along with PBL heights calculated using bulk Richardson number. Daytime maximum PBL heights ranged from 2.57 km during Etesian flows, to as low as 0.37 km during Saharan flows. The largest differences between model and observations are found with simulated PBL height during Saharan synoptic flows. During the daytime, campaign-averaged near-surface variables show WRF tended to have a cool, moist bias with higher simulated wind speeds than the observations, especially near the coast. It is determined that non-local PBL schemes give the most agreeable solutions when compared with observations.Peer ReviewedPostprint (published version
Detecting volcanic sulfur dioxide plumes in the Northern Hemisphere using the Brewer spectrophotometer, other networks, and satellite observations
This paper demonstrates that SO 2 columnar amounts have significantly increased following the five
largest volcanic eruptions of the past decade in the Northern Hemisphere. A strong positive signal was detected
by all the existing networks either ground based (Brewer, EARLINET, AirBase) or from satellites (OMI,
GOME-2). The study particularly examines the adequacy of the existing Brewer network to detect SO 2 plumes
of volcanic origin in comparison to other networks and satellite platforms. The comparison with OMI and 45
GOME-2 SO 2 space-borne retrievals shows statistically significant agreement between the Brewer network data
and the collocated satellite overpasses. It is shown that the Brewer instrument is capable of detecting significant columnar SO 2 increases following large volcanic eruptions, when SO 2 levels rise well above the instrumental
noise of daily observations, estimated to be of the order of 2 DU. A model exercise from the MACC project
shows that the large increases of SO 2 over Europe following the Bárðarbunga eruption in Iceland were not
caused by local sources or ship emissions but are clearly linked to the eruption. We propose that by combining
Brewer data with that from other networks and satellites, a useful tool aided by trajectory analyses and modeling
could be created which can be used to forecast high SO 2 values both at ground level and in air flight corridors
following future eruptions
Vertical Profiles of Aerosol Optical and Microphysical Properties During a Rare Case of Long-range Transport of Mixed Biomass Burning-polluted Dust Aerosols from the Russian Federation-kazakhstan to Athens, Greece
Multi-wavelength aerosol Raman lidar measurements with elastic depolarization at 532 nm were combined with sun photometry during the HYGRA-CD campaign over Athens, Greece, on May-June 2014. We retrieved the aerosol optical [3 aerosol backscatter profiles (baer) at 355-532-1064 nm, 2 aerosol extinction (aaer) profiles at 355-532 nm and the aerosol linear depolarization ratio (δ) at 532 nm] and microphysical properties [effective radius (reff), complex refractive index (m), single scattering albedo (ω)]. We present a case study of a long distance transport (~3.500-4.000 km) of biomass burning particles mixed with dust from the Russian Federation-Kazakhstan regions arriving over Athens on 21-23 May 2014 (1.7-3.5 km height). On 23 May, between 2-2.75 km we measured mean lidar ratios (LR) of 35 sr (355 nm) and 42 sr (532 nm), while the mean Ångström exponent (AE) aerosol backscatter-related values (355nm/532nm and 532nm/1064nm) were 2.05 and 1.22, respectively; the mean value of δ at 532 nm was measured to be 9%. For that day the retrieved mean aerosol microphysical properties at 2-2.75 km height were: reff=0.26 μm (fine mode), reff=2.15 μm (coarse mode), m=1.36+0.00024i, ω=0.999 (355 nm, fine mode), ω=0.992(355 nm, coarse mode), ω=0.997 (532 nm, fine mode), and ω=0.980 (532 nm, coarse mode)
Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP
We present a 3-D climatology of the desert dust distribution over South and East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network). The method involves the use of the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, applied to multiyear CALIPSO observations (January 2007-December 2015). The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over South and East Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (dust aerosol optical depth) values at 532 nm, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity) is subject to high seasonality, with the highest values observed during spring for northern China (Taklimakan and Gobi deserts) and during summer over the Indian subcontinent (Thar Desert). Additionally, we decompose the CALIPSO AOD (aerosol optical depth) into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of South and East Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between January 2007 and December 2015 are calculated over South and East Asia and over selected subregions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China trends are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer), although significant differences are observed over specific regions.Peer reviewe
The development of METAL-WRF Regional Model for the description of dust mineralogy in the atmosphere
The mineralogical composition of airborne dust particles is an important but often neglected parameter for several physiochemical processes, such as atmospheric radiative transfer and ocean biochemistry. We present the development of the METAL-WRF module for the simulation of the composition of desert dust minerals in atmospheric aerosols. The new development is based on the GOCART-AFWA dust module of WRF-Chem. A new wet deposition scheme has been implemented in the dust module alongside the existing dry deposition scheme. The new model includes separate prognostic fields for nine (9) minerals: illite, kaolinite, smectite, calcite, quartz, feldspar, hematite, gypsum, and phosphorus, derived from the GMINER30 database and also iron derived from the FERRUM30 database. Two regional model sensitivity studies are presented for dust events that occurred in August and December 2017, which include a comparison of the model versus elemental dust composition measurements performed in the North Atlantic (at Izaña Observatory, Tenerife Island) and in the eastern Mediterranean (at Agia Marina Xyliatos station, Cyprus Island). The results indicate the important role of dust minerals, as dominant aerosols, for the greater region of North Africa, South Europe, the North Atlantic, and the Middle East, including the dry and wet depositions away from desert sources. Overall, METAL-WRF was found to be capable of reproducing the relative abundances of the different dust minerals in the atmosphere. In particular, the concentration of iron (Fe), which is an important element for ocean biochemistry and solar absorption, was modeled in good agreement with the corresponding measurements at Izaña Observatory (22% overestimation) and at Agia Marina Xyliatos site (4% overestimation). Further model developments, including the implementation of newer surface mineralogical datasets, e.g., from the NASA-EMIT satellite mission, can be implemented in the model to improve its accuracy.This study was supported by the Hellenic Foundation for Research and Innovation project
Mineralogy of Dust Emissions and Impacts on Environment and Health (MegDeth - HFRI no. 703).
Part of this study was conducted within the framing of the AERO-EXTREME (PID2021-125669NB-I00)
project funded by the State Research Agency/Agencia Estatal de Investigación of Spain and the
European Regional Development Funds
Recommended from our members
An EARLINET early warning system for atmospheric aerosol aviation hazards
A stand-alone lidar-based method for detecting airborne hazards for aviation in near real time (NRT) is presented. A polarization lidar allows for the identification of irregular-shaped particles such as volcanic dust and desert dust. The Single Calculus Chain (SCC) of the European Aerosol Research Lidar Network (EARLINET) delivers high-resolution preprocessed data: the calibrated total attenuated backscatter and the calibrated volume linear depolarization ratio time series. From these calibrated lidar signals, the particle backscatter coefficient and the particle depolarization ratio can be derived in temporally high resolution and thus provide the basis of the NRT early warning system (EWS). In particular, an iterative method for the retrieval of the particle backscatter is implemented. This improved capability was designed as a pilot that will produce alerts for imminent threats for aviation. The method is applied to data during two diverse aerosol scenarios: first, a record breaking desert dust intrusion in March 2018 over Finokalia, Greece, and, second, an intrusion of volcanic particles originating from Mount Etna, Italy, in June 2019 over Antikythera, Greece. Additionally, a devoted observational period including several EARLINET lidar systems demonstrates the network's preparedness to offer insight into natural hazards that affect the aviation sector. © 2020 Author(s)
An EARLINET early warning system for atmospheric aerosol aviation hazards
A stand-alone lidar-based method for detecting
airborne hazards for aviation in near real time (NRT) is
presented. A polarization lidar allows for the identification
of irregular-shaped particles such as volcanic dust and
desert dust. The Single Calculus Chain (SCC) of the European
Aerosol Research Lidar Network (EARLINET) delivers
high-resolution preprocessed data: the calibrated total
attenuated backscatter and the calibrated volume linear
depolarization ratio time series. From these calibrated lidar
signals, the particle backscatter coefficient and the particle
depolarization ratio can be derived in temporally high resolution
and thus provide the basis of the NRT early warning
system (EWS). In particular, an iterative method for the retrieval
of the particle backscatter is implemented. This improved
capability was designed as a pilot that will produce alerts for imminent threats for aviation. The method is applied
to data during two diverse aerosol scenarios: first, a
record breaking desert dust intrusion in March 2018 over Finokalia,
Greece, and, second, an intrusion of volcanic particles
originating from Mount Etna, Italy, in June 2019 over
Antikythera, Greece. Additionally, a devoted observational
period including several EARLINET lidar systems demonstrates
the network’s preparedness to offer insight into natural
hazards that affect the aviation sector.ACTRIS-2
654109ACTRIS preparatory phase
739530EUNADICS-AV
723986E-shape (EuroGEOSS Showcases: Applications Powered by Europe)
820852Ministry of Research and Innovation, Ontario
19PFE/17.10.2018Romanian National Core Program
18N/2019European Commission
European Commission Joint Research Centre
72569
- …