30 research outputs found

    Electricity storage requirements to support the transition towards high renewable penetration levels: Application to the Greek power system

    Full text link
    This paper investigates the electricity storage requirements to support the transition towards a high renewable energy source (RES) penetration in a cost-optimal manner. The achieved reduction of renewable energy curtailments and the decrease in the total generation cost of the system are quantified against a counterfactual scenario without storage. A methodology is presented to determine the optimum mix of short- and medium-duration storage needed to support system operation at increased RES penetration levels, using the mixed integer linear programming mathematical optimization. The Greek power system serves as a realistic study case, in its planned development for the year 2030, with a targeted annual RES energy penetration in the order of 60%. Li-ion batteries and pumped-hydro are selected as the representative technologies to include in the storage mix, assuming energy-to-power ratios of up to 6 hours for the former and 10 hours for the latter. It is shown that the introduction of a suitable mixture of storage facilities may improve renewable energy integration and, at the same time, reduce system cost to the extent that entirely compensates for the full cost of storage, thus allowing for a net economic benefit for the system. The optimum storage portfolio for the study case system and the targeted RES penetration level combines 2-h batteries and 6-h pumped-hydro stations, with an aggregate capacity of new facilities between 1250 MW and 1750 MW, on top of the existing 700 MW of open-loop pumped hydro plants. The optimum storage requirements vary with the targeted RES penetration and with the balance of RES technologies in the generation mix, particularly the level of PV integration.Comment: 28 pages, 19 figure

    A Power Flow Method for Radial Distribution Feeders with DER Penetration

    Get PDF
    This paper presents a novel power flow method suitable for radial distribution feeders, which consists a modification of the simplified power flow concept known as the DistFlow method, already available in the literature. The proposed method relies upon a differentiated manipulation of power losses, which are taken into account in voltage calculations, unlike other simplified methods, where losses are totally neglected. As a result, calculation accuracy is greatly improved, in terms of node voltages, losses and overall active & reactive power flows. In addition, the proposed method is non-iterative and entirely linear, being easily implementable and fast in execution. The method is particularly suited for feeders with a high penetration of Distributed Energy Resources (DER), providing results that closely match those of a full non-linear power flow and are considerably more accurate than the traditional linearized distribution power flow methods, without any increase in computational burden. The new method is applied to a variety of case studies in the paper, to demonstrate its accuracy and effectiveness, comparing its performance with the simplified (linearized) DistFlow and a conventional non-linear power flow method

    A Method for the Analytical Extraction of the Single-Diode PV Model Parameters

    No full text
    Determination of PV model parameters usually requires time consuming iterative procedures, prone to initialization and convergence difficulties. In this paper, a set of analytical expressions is introduced to determine the five parameters of the single-diode model for crystalline PV modules at any operating conditions, in a simple and straightforward manner. The derivation of these equations is based on a newly found relation between the diode ideality factor and the open circuit voltage, which is explicitly formulated using the temperature coefficients. The proposed extraction method is robust, cost-efficient, and easy-to-implement, as it relies only on datasheet information, while it is based on a solid theoretical background. Its accuracy and computational efficiency is verified and compared to other methods available in the literature through both simulation and outdoor measurements.</p

    Comparative Assessment of Priority Listing and Mixed Integer Linear Programming Unit Commitment Methods for Non-Interconnected Island Systems

    No full text
    The generation management concept for non-interconnected island (NII) systems is traditionally based on simple, semi-empirical operating rules dating back to the era before the massive deployment of renewable energy sources (RES), which do not achieve maximum RES penetration, optimal dispatch of thermal units and satisfaction of system security criteria. Nowadays, more advanced unit commitment (UC) and economic-dispatch (ED) approaches based on optimization techniques are gradually introduced to safeguard system operation against severe disturbances, to prioritize RES participation and to optimize dispatch of the thermal generation fleet. The main objective of this paper is to comparatively assess the traditionally applied priority listing (PL) UC method and a more sophisticated mixed integer linear programming (MILP) UC optimization approach, dedicated to NII power systems. Additionally, to facilitate the comparison of the UC approaches and quantify their impact on systems security, a first attempt is made to relate the primary reserves capability of each unit to the maximum acceptable frequency deviation at steady state conditions after a severe disturbance and the droop characteristic of the unit&#8217;s speed governor. The fundamental differences between the two approaches are presented and discussed, while daily and annual simulations are performed and the results obtained are further analyzed

    Battery Energy Storage Participation in Automatic Generation Control of Island Systems, Coordinated with State of Charge Regulation

    No full text
    Efficient storage participation in the secondary frequency regulation of island systems is a prerequisite towards their complete decarbonization. However, energy reserve limitations of storage resources pose challenges to their integration in centralized automatic generation control (AGC). This paper presents a frequency control method, in which battery energy storage systems (BESSs) participate in automatic frequency restoration reserve (aFRR) provision, through their integration in the AGC of an island system. A local state of charge (SOC) controller ensures safe operation of the BESS in case of disturbances, without jeopardizing system security when available energy reserves are diminishing. The aFRR participation factors of regulating units are altered when the storage systems approach their SOC limits, re-allocating their reserves to other load-following units. Restoration of BESS energy reserves is achieved by integrating SOC regulation in the real-time economic dispatch of the system, formulated as a mixed-integer linear programming problem and solved every few minutes to determine the base points of the AGC units. A small autonomous power system, comprising conventional units, renewable energy sources and a BESS, is used as a study case to evaluate the performance of the proposed method, which is compared with alternative approaches to secondary regulation with BESS participation

    Battery Energy Storage Participation in Automatic Generation Control of Island Systems, Coordinated with State of Charge Regulation

    No full text
    Efficient storage participation in the secondary frequency regulation of island systems is a prerequisite towards their complete decarbonization. However, energy reserve limitations of storage resources pose challenges to their integration in centralized automatic generation control (AGC). This paper presents a frequency control method, in which battery energy storage systems (BESSs) participate in automatic frequency restoration reserve (aFRR) provision, through their integration in the AGC of an island system. A local state of charge (SOC) controller ensures safe operation of the BESS in case of disturbances, without jeopardizing system security when available energy reserves are diminishing. The aFRR participation factors of regulating units are altered when the storage systems approach their SOC limits, re-allocating their reserves to other load-following units. Restoration of BESS energy reserves is achieved by integrating SOC regulation in the real-time economic dispatch of the system, formulated as a mixed-integer linear programming problem and solved every few minutes to determine the base points of the AGC units. A small autonomous power system, comprising conventional units, renewable energy sources and a BESS, is used as a study case to evaluate the performance of the proposed method, which is compared with alternative approaches to secondary regulation with BESS participation

    A method for the analytical extraction of the single-diode PV model parameters

    No full text
    Determination of PV model parameters usually requires time consuming iterative procedures, prone to initialization and convergence difficulties. In this paper, a set of analytical expressions is introduced to determine the five parameters of the single-diode model for crystalline PV modules at any operating conditions, in a simple and straightforward manner. The derivation of these equations is based on a newly found relation between the diode ideality factor and the open circuit voltage, which is explicitly formulated using the temperature coefficients. The proposed extraction method is robust, cost-efficient, and easy-to-implement, as it relies only on datasheet information, while it is based on a solid theoretical background. Its accuracy and computational efficiency is verified and compared to other methods available in the literature through both simulation and outdoor measurements.</p

    A partial shading detection technique for MPPT algorithms in PV systems

    No full text
    In this paper, a simple algorithmic enhancement for MPPT methods is introduced, which mathematically determines if the PV system is shaded, thus avoiding unnecessary curve scanning to locate the global maximum if it is unshaded. The proposed technique improves the overall efficiency and applies to any PV system at any irradiance distribution, using only a common temperature sensor
    corecore