731 research outputs found
Dissociation Between Users’ Explicit and Implicit Attitudes Toward Artificial Intelligence: An Experimental Study
The latest developments in the field of artificial intelligence (AI) have given rise to many ethical and socio-economic concerns. Nonetheless, the impact of AI technologies is evident and tangible in our everyday life. This dichotomy leads to mixed feelings toward AI: people recognize the positive impact of AI, but they also show concerns, especially about their privacy and security. In this article, we try to understand whether the implicit and explicit attitudes toward AI are coherent. We investigated explicit and implicit attitudes toward AI by combining a self-report measure and an implicit measure, i.e., the implicit association test. We analyzed the explicit and implicit responses of 829 participants. Results revealed that while most of the participants explicitly express a positive attitude toward AI, their implicit responses seem to point in the opposite direction. Results also show that, in both the explicit and implicit measures, females show a more negative attitude than males, and people who work in the field of AI are inclined to be positive toward AI
Evolution of the mass-loss rate during atmospheric and pressurized slow pyrolysis of wheat straw in a bench-scale reactor
In the present study, the effects of the absolute pressure (0.1 or 0.5 MPa) and the reactor atmosphere (pure N2 or a mixture of CO2/N2) on the pyrolysis behavior of wheat straw pellets (at 500 °C) were investigated. The most interesting aspect of this work was the use of a weighing platform (with a maximum capacity of 100 kg and a resolution of 0.5 g) to monitor the real-time mass-loss data for the biomass sample (with an initial mass of 400 g). It was observed that an increased pressure considerably affects the mass-loss profiles during the pyrolysis process, leading to higher devolatilization rates in a shorter period of time. Regardless of the pyrolysis atmosphere, an increase in the absolute pressure led to higher yields of gas at the expense of produced water and condensable organic compounds. This finding could be due to the fact that an increased pressure favors the exothermic secondary reactions of the intermediate volatile organic compounds in both liquid and vapor phases. The switch from pure N2 to a mixture of CO2 and N2 at 0.1 MPa also led to a remarkable increase in the yield of produced gas at the expense of the total liquid. This could be mainly due to the promotion of the thermal cracking of the volatile organic compounds at a high partial pressure of CO2, which is also consistent with the measured higher yields of CH4 and CO. The increased yield of CO can also be seen as a direct result of the enhanced reverse Boudouard reaction, which can also explain the much higher specific surface area (and ultra-micropore volume) measured for the biochar produced under the same operating conditions (0.1 MPa and a mixture CO2/N2 as pyrolysis medium)
Oculomotor Assessment of Diurnal Arousal Variations
Saccadic and pupillary responses are reliable indices of arousal decrement (e.g. fatigue), that might be exploited to improve work schedule guidelines. In this study, we tested the sensitivity of a short 30-s oculomotor test to detect diurnal arousal variations. Twelve participants (5 females, 7 males, 37.7+-11.9 years) volunteered to be assessed every hour (66+-20 min) for three consecutive working days, during their regular office-hours. We used a fully automated testing system, the FIT 2000 Fitness Impairment Tester (Pulse Medical Instruments Inc., Rockville, MD, USA), to measure and record saccadic peak velocity, pupil diameter, and latency and amplitude of the pupillary light reflex. In addition, we collected subjective levels of arousal using the Stanford Sleepiness Scale, and body core temperature. We analyzed the data using a linear mixed model approach for longitudinal data. Both saccadic velocity and subjective alertness decreased over the course of a day, while body core temperature increased (all p-values.05). The data also weakly suggested an increase of the pupil diameter (p 07). The findings support the use of oculomotor indices in the assessment of arousal and fatigue in applied settings
Evolution of the Mass Loss Rate During Atmospheric and Pressurized Slow Pyrolysis of Wheat Straw in a Bench-Scale Reactor
A deep study focused on the significant effect of the absolute pressure on the yield of produced gas during the slow pyrolysis of biomass was carried out. In addition, the evolution of the mass loss rate linked to the pyrolysis process was also analyzed
SARS-CoV-2 and Viral Sepsis: Immune Dysfunction and Implications in Kidney Failure
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19), first emerged in Wuhan, China. The clinical manifestations of patients infected with COVID-19 include fever, cough, and dyspnea, up to acute respiratory distress syndrome (ARDS) and acute cardiac injury. Thus, a lot of severe patients had to be admitted to intensive care units (ICU). The pathogenic mechanisms of SARS-CoV-2 infection are mediated by the binding of SARS-CoV-2 spikes to the human angiotensin-converting enzyme 2 (ACE-2) receptor. The overexpression of human ACE-2 is associated with the disease severity in SARS-CoV-2 infection, demonstrating that viral entry into cells is a pivotal step. Although the lung is the organ that is most commonly affected by SARS-CoV-2 infection, acute kidney injury (AKI), heart dysfunction and abdominal pain are the most commonly reported co-morbidities of COVID-19. The occurrence of AKI in COVID-19 patients might be explained by several mechanisms that include viral cytopathic effects in renal cells and the host hyperinflammatory response. In addition, kidney dysfunction could exacerbate the inflammatory response started in the lungs and might cause further renal impairment and multi-organ failure. Mounting recent evidence supports the involvement of cardiovascular complications and endothelial dysfunction in COVID-19 syndrome, in addition to respiratory disease. To date, there is no vaccine, and no specific antiviral medicine has been shown to be effective in preventing or treating COVID-19. The removal of pro-inflammatory cytokines and the shutdown of the cytokine storm could ameliorate the clinical outcome in severe COVID-19 cases. Therefore, several interventions that inhibit viral replication and the systemic inflammatory response could modulate the severity of the renal dysfunction and increase the probability of a favorable outcome
Structural and biological characterization of shortened derivatives of the cathelicidin PMAP-36
Cathelicidins, a family of host defence peptides in vertebrates, play an important role in the innate immune response, exhibiting antimicrobial activity against many bacteria, as well as viruses and fungi. This work describes the design and synthesis of shortened analogues of porcine cathelicidin PMAP-36, which contain structural changes to improve the pharmacokinetic properties. In particular, 20-mers based on PMAP-36 (residues 12-31) and 13-mers (residues 12-24) with modification of amino acid residues at critical positions and introduction of lipid moieties of different lengths were studied to identify the physical parameters, including hydrophobicity, charge, and helical structure, required to optimise their antibacterial activity. Extensive conformational analysis, performed by CD and NMR, revealed that the substitution of Pro25-Pro26 with Ala25-Lys26 increased the alpha-helix content of the 20-mer peptides, resulting in broad-spectrum antibacterial activity against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus epidermidis strains. Interestingly, shortening to just 13 residues resulted in only a slight decrease in antibacterial activity. Furthermore, two sequences, a 13-mer and a 20-mer, did not show cytotoxicity against HaCat cells up to 64 mu M, indicating that both derivatives are not only effective but also selective antimicrobial peptides. In the short peptide, the introduction of the helicogenic alpha-aminoisobutyric acid forced the helix toward a prevailing 3(10) structure, allowing the antimicrobial activity to be maintained. Preliminary tests of resistance to Ser protease chymotrypsin indicated that this modification resulted in a peptide with an increased in vivo lifespan. Thus, some of the PMAP-36 derivatives studied in this work show a good balance between chain length, antibacterial activity, and selectivity, so they represent a good starting point for the development of even more effective and proteolysis-resistant active peptides
Needs and problems related to sociodemographic factors of informal caregiving of people with heart failure: A mixed methods study in three European countries
Aims: To explore caregivers' needs and problems in three European countries and associate the clusters of caregivers' needs with their sociodemographic characteristics. Design: A qualitative focused mixed methods design was used. Methods: In total, 52 caregivers of heart failure (HF) people were interviewed in three European countries between March 2017 and December 2018. Transcripts were analysed using the seven-phase method of the exploratory multidimensional analysis according to Fraire with Reinert lexical classes findings were organized in dendrograms. Mayring's content analysis was also performed. Results: Three clusters of caregivers were identified: spouses, adult children and non-family members. Caregivers not only provide HF patients with vital unpaid support for their physical and emotional needs, but they are continually trying to cope with their social isolation and deteriorating health. Conclusions: Informal caregiving emerged as a complex process influenced by various sociodemographic factors. Gender, relationship type and economic status are the important factors to be considered planning to develop approaches to address the needs of caregivers serving people with heart failure. Impact: A comprehensive understanding of the nature of informal caregiving of individuals with heart failure, the complexity of the real-world sociodemographic and cultural factors is warranted. The use of the EMDA method gave us the possibility of processing large masses of qualitative data through rapid, complex calculations. In detail, AATD allowed us to study in deep the significant fuzziness of what caregivers expressed and to analyse the content of the entire interviews and to produce global knowledge by using multi-dimensional statistical methods to grasp the fundamental sense of the interviews, beyond the simple words. Three clusters were identified in the samples, including spouses, adult children and non-family members. This study demonstrated that some sociodemographic characteristics could lead to everyday needs. Therefore, these demographic characteristics should be considered in developing targeted interventions. The research was conducted in Europe, but the technique shown can be replicated everywhere. The findings not only impact nursing but can be extended to all those stakeholders who concur with a public health educational mission. Patient or Public Contribution: Carers were involved in this study after the discharge of their loved ones or at the time of the outpatient visit. They were involved after they had been observed in their dynamics of involvement in caring of the familiars or friends with heart failure
Proline-Rich Peptides with Improved Antimicrobial Activity against E. coli, K. Pneumoniae, and A. Baumannii.
Proline-rich antimicrobial peptides (PrAMPs) are promising agents to combat multi-drug resistant pathogens due to a high antimicrobial activity, yet low cytotoxicity. A library of derivatives of the PrAMP Bac5(1-17) was synthesized and screened to identify which residues are relevant for its activity. In this way, we discovered that two central motifs -PIRXP- cannot be modified, while residues at N- and C- termini tolerated some variations. We found five Bac5(1-17) derivatives bearing 1-5 substitutions, with an increased number of arginine and/or tryptophan residues, exhibiting improved antimicrobial activity and broader spectrum of activity while retaining low cytotoxicity toward eukaryotic cells. Transcription/translation and bacterial membrane permeabilization assays showed that these new derivatives still retained the ability to strongly inhibit bacterial protein synthesis, but also acquired permeabilizing activity to different degrees. These new Bac5(1-17) derivatives therefore show a dual mode of action which could hinder the selection of bacterial resistance against these molecules
Emerging role of Lipopolysaccharide binding protein in sepsis-induced acute kidney injury
Sepsis remains a serious cause of morbidity and mortality in critically ill patients, with limited therapeutic options available. Of the several disorders connected with sepsis, acute kidney injury (AKI) is one of the major complications. The pathophysiology of sepsis-induced AKI is characterized by severe inflammation in renal parenchyma with endothelial dysfunction, intra-glomerular thrombosis and tubular injury. Endothelial dysfunction is regulated by several mechanisms implicated in cellular de-differentiation, such as endothelial-to-mesenchymal transition (EndMT). Gram-negative bacteria and their cell wall component lipopolysaccharides (LPSs) are frequently involved in the pathogenesis of AKI. The host recognition of LPS requires a specific receptor, which belongs to the Toll-like receptor (TLR) family of proteins, called TLR4, and two carrier proteins, namely the LPS-binding protein (LBP) and cluster of differentiation 14 (CD14). In particular, LBP is released as a consequence of Gram-negative infection and maximizes the activation of TLR4 signalling. Recent findings regarding the emerging role of LBP in mediating sepsis-induced AKI, and the possible beneficial effects resulting from the removal of this endogenous adaptor protein, will be discussed in this review
Three-year tracking of fatty acid composition of plasma phospholipids in healthy children
Objectives: The fatty acid composition of plasma phospholipids reflects the dietary fatty acid intake as well as endogenous turnover. We aimed at investigating the potential tracking of plasma phospholipid fatty acid composition in children that participated in a prospective cohort study. Methods: 26 healthy children participated in a longitudinal study on health risks and had been enrolled after birth. All children were born at term with birth weights appropriate for gestational age. Follow-up took place at ages 24, 36 and 60 months. At each time point a 24-hour dietary recall was obtained, anthropometric parameters were measured and a blood sample for phospholipid fatty acid analysis was taken. Results: Dietary intake of saturated (SFA), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids at the three time points were not correlated. We found lower values for plasma MUFA and the MUFA/SFA ratio at 60 months compared to 24 months. In contrast, total PUFA, total n-6 and n-6 long-chain polyunsaturated fatty acids (LC-PUFA) were higher at 60 months. Significant averaged correlation coefficients (average of Pearson's R for 24 versus 36 months and 36 versus 60 months) were found for n-6 LC-PUFA (r = 0.67), n-6/n-3 LC-PUFA ratio (r = 0.59) and arachidonic acid/linoleic acid ratio (r = 0.64). Partial tracking was found for the docosahexaenoic acid/alpha-linolenic acid ratio (r = 0.33). Body mass index and sum of skinfolds Z-scores were similar in the three evaluations. Conclusions: A significant tracking of n-6 LC-PUFA, n-6 LC-PUFA/n-3 LC-PUFA ratio, arachidonic acid/ linoleic acid ratio and docosahexaenoic acid/alpha-linolenic acid ratio may reflect an influence of individual endogenous fatty acid metabolism on plasma concentrations of some, but not all, fatty acids. Copyright (c) 2007 S. Karger AG, Basel
- …