8 research outputs found

    Discovery and Observations of ASASSN-13db, an EX Lupi-Type Accretion Event on a Low-Mass T Tauri Star

    Get PDF
    We discuss ASASSN-13db, an EX Lupi-type ("EXor") accretion event on the young stellar object (YSO) SDSS J051011.01−-032826.2 (hereafter SDSSJ0510) discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN). Using archival photometric data of SDSSJ0510 we construct a pre-outburst spectral energy distribution (SED) and find that it is consistent with a low-mass class II YSO near the Orion star forming region (d∌420d \sim 420 pc). We present follow-up photometric and spectroscopic observations of the source after the ΔV∌−\Delta V \sim-5.4 magnitude outburst that began in September 2013 and ended in early 2014. These data indicate an increase in temperature and luminosity consistent with an accretion rate of ∌10−7\sim10^{-7} M⊙\rm{M}_\odot yr−1^{-1}, three or more orders of magnitude greater than in quiescence. Spectroscopic observations show a forest of narrow emission lines dominated by neutral metallic lines from Fe I and some low-ionization lines. The properties of ASASSN-13db are similar to those of the EXor prototype EX Lupi during its strongest observed outburst in late 2008.Comment: 14 pages, 4 figures, 1 table. Updated May 2014 to reflect changes in the final version published in ApJL. Photometric data presented in this submission are included as ancillary files. For a brief video explaining this paper, see http://youtu.be/yRCCrNJnvt

    Infrared Space Observatory and Ground-Based Infrared Observation of the Classical Nova V723 Cassiopeiae

    Get PDF
    We present observations of the classical nova V723 Cassiopeiae (Nova Cas 1995), obtained both with the Infrared Space Observatory (ISO) and from the ground. The infrared spectrum was dominated in the first year by H and He recombination lines, and at later times by coronal lines. The H recombination lines imply a reddening of E(B-V) = 0.78, an electron temperature of 7000 K, and an electron density of 2 × 108 cm-3 on day 250. We argue that the high-ionization species in the infrared are most likely the result of collisional ionization rather than photoionization and are therefore truly "coronal"; we estimate a temperature of 3.2 × 105 K in the coronal region and abundance ratios of S/Si 2.1, Ca/Si 1.6, and Al/Si 1.5. The ejected mass as determined from the Brα line was 2.6 × 10-5 M⊙ for a distance of 4 kpc; however, the mass deduced from the free-free emission, which we conclude arises primarily in the coronal zone, is 4.3 × 10-4 M⊙. V723 Cas did not display the [O IV] 25.89 ÎŒm fine-structure line, which was typically seen in the spectra of novae observed with ISO. There was no evidence of dust emission in V723 Cas

    Novae Ejecta as Colliding Shells

    Full text link
    Following on our initial absorption-line analysis of fifteen novae spectra we present additional evidence for the existence of two distinct components of novae ejecta having different origins. As argued in Paper I one component is the rapidly expanding gas ejected from the outer layers of the white dwarf by the outburst. The second component is pre-existing outer, more slowly expanding circumbinary gas that represents ejecta from the secondary star or accretion disk. We present measurements of the emission-line widths that show them to be significantly narrower than the broad P Cygni profiles that immediately precede them. The emission profiles of novae in the nebular phase are distinctly rectangular, i.e., strongly suggestive of emission from a relatively thin, roughly spherical shell. We thus interpret novae spectral evolution in terms of the collision between the two components of ejecta, which converts the early absorption spectrum to an emission-line spectrum within weeks of the outburst. The narrow emission widths require the outer circumbinary gas to be much more massive than the white dwarf ejecta, thereby slowing the latter's expansion upon collision. The presence of a large reservoir of circumbinary gas at the time of outburst is suggestive that novae outbursts may sometime be triggered by collapse of gas onto the white dwarf, as occurs for dwarf novae, rather than steady mass transfer through the inner Lagrangian point.Comment: 12 pages, 3 figures; Revised manuscript; Accepted for publication in Astrophysics & Space Scienc

    Discovery and observations of ASASSN-13db, an EX lupi-type accretion event on a low-mass T tauri star

    No full text
    We discuss ASASSN-13db, an EX Lupi-type ("EXor") accretion event on the young stellar object (YSO) SDSS J051011.01-032826.2 (hereafter SDSSJ0510) discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN). Using archival photometric data of SDSSJ0510 we construct a pre-outburst spectral energy distribution and find that it is consistent with a low-mass class II YSO near the Orion star forming region (d ~ 420 pc). We present follow-up photometric and spectroscopic observations of the source after the ΔV ~ -5.4 mag outburst that began in 2013 September and ended in early 2014. These data indicate an increase in temperature and luminosity consistent with an accretion rate of 10-7 M☉ yr-1 , three or more orders of magnitude greater than in quiescence. Spectroscopic observations show a forest of narrow emission lines dominated by neutral metallic lines from Fe I and some low-ionization lines. The properties of ASASSN-13db are similar to those of the EXor prototype EX Lupi during its strongest observed outburst in late 2008.</p

    Physics book: CRYRING@ESR

    No full text
    The exploration of the unique properties of stored and cooled beams of highly-charged ions as provided by heavy-ion storage rings has opened novel and fascinating research opportunities in the realm of atomic and nuclear physics research. Since the late 1980s, pioneering work has been performed at the CRYRING at Stockholm (Abrahamsson et al. 1993) and at the Test Storage Ring (TSR) at Heidelberg (Baumann et al. 1988). For the heaviest ions in the highest charge-states, a real quantum jump was achieved in the early 1990s by the commissioning of the Experimental Storage Ring (ESR) at GSI Helmholtzzentrum fĂŒr Schwerionenforschung (GSI) in Darmstadt (Franzke 1987) where challenging experiments on the electron dynamics in the strong field regime as well as nuclear physics studies on exotic nuclei and at the borderline to atomic physics were performed. Meanwhile also at Lanzhou a heavy-ion storage ring has been taken in operation, exploiting the unique research opportunities in particular for medium-heavy ions and exotic nuclei (Xia et al. 2002)

    Nuclear processes in astrophysics: Recent progress

    No full text
    corecore