176 research outputs found
The Length of the Longest Increasing Subsequence of a Random Mallows Permutation
The Mallows measure on the symmetric group is the probability measure
such that each permutation has probability proportional to raised to the
power of the number of inversions, where is a positive parameter and the
number of inversions of is equal to the number of pairs such that
. We prove a weak law of large numbers for the length of the
longest increasing subsequence for Mallows distributed random permutations, in
the limit that tends to infinity and tends to 1 in such a way that
has a limit in
Catholic University Co-Operative Agreement
R. Starr is the leader of the science team for the X-Ray Spectrometer (XRS) which will fly on-board the SSTI Clark satellite. This XRS will fly small room-temperature, solid-state detectors that have never been flown in space before. In addition to testing this new technology, this instrument is designed to detect X-rays from solar flares and gamma-ray bursts in the energy region from about 1 keV to 100 keV. The XRS has been through environmental testing and has been integrated to the spacecraft. The Clark spacecraft is scheduled to be launched in August 1998 and the XRS will collect data in orbit continuously for the next three years
On the asymptotic enumerativity property for Fano manifolds
We study the enumerativity of Gromov-Witten invariants where the domain curve
is fixed in moduli and required to pass through the maximum possible number of
points. We say a Fano manifold satisfies asymptotic enumerativity if such
invariants are enumerative whenever the degree of the curve is sufficiently
large. Lian and Pandharipande speculate that every Fano manifold satisfies
asymptotic enumerativity. We give the first counterexamples, as well as some
new examples where asymptotic enumerativity holds. The negative examples
include special hypersurfaces of low Fano index and certain projective bundles,
and the new positive examples include many Fano threefolds and all smooth
hypersurfaces of degree in .Comment: comments welcome
Recommended from our members
Precipitation-static radio-interference phenomena originating on aircraft, including studies of high-voltage direct-current point discharges and accompanying radio disturbances, and of electric and magnetic induction
Ares I-X Range Safety Simulation and Analysis IV and V
NASA s Ares I-X vehicle launched on a suborbital test flight from the Eastern Range in Florida on October 28, 2009. NASA generated a Range Safety (RS) product data package to meet the RS trajectory data requirements defined in the Air Force Space Command Manual (AFSPCMAN) 91-710. Some products included were a nominal ascent trajectory, ascent flight envelopes, and malfunction turn data. These products are used by the Air Force s 45th Space Wing (45SW) to ensure public safety and to make flight termination decisions on launch day. Due to the criticality of the RS data, an independent validation and verification (IV&V) effort was undertaken to accompany the data generation analyses to ensure utmost data quality and correct adherence to requirements. As a result of the IV&V efforts, the RS product package was delivered with confidence that two independent organizations using separate simulation software generated data to meet the range requirements and yielded similar results. This document captures the Ares I-X RS product IV&V analysis, including the methodology used to verify inputs, simulation, and output data for certain RS products. Additionally a discussion of lessons learned is presented to capture advantages and disadvantages to the IV&V processes used
Systems Analysis for a Venus Aerocapture Mission
Previous high level analysis has indicated that significant mass savings may be possible for planetary science missions if aerocapture is employed to place a spacecraft in orbit. In 2001 the In-Space Propulsion program identified aerocapture as one of the top three propulsion technologies for planetary exploration but that higher fidelity analysis was required to verify the favorable results and to determine if any supporting technology gaps exist that would enable or enhance aerocapture missions. A series of three studies has been conducted to assess, from an overall system point of view, the merit of using aerocapture at Titan, Neptune and Venus. These were chosen as representative of a moon with an atmosphere, an outer giant gas planet and an inner planet. The Venus mission, based on desirable science from plans for Solar System Exploration and Principal Investigator proposals, to place a spacecraft in a 300km polar orbit was examined and the details of the study are presented in this paper
The Rapidly Flaring Afterglow of the Very Bright and Energetic GRB 070125
We report on multi-wavelength observations, ranging from the X-ray to radio
wave bands, of the IPN-localized gamma-ray burst GRB 070125. Spectroscopic
observations reveal the presence of absorption lines due to O I, Si II, and C
IV, implying a likely redshift of z = 1.547. The well-sampled light curves, in
particular from 0.5 to 4 days after the burst, suggest a jet break at 3.7 days,
corresponding to a jet opening angle of ~7.0 degrees, and implying an intrinsic
GRB energy in the 1 - 10,000 keV band of around E = (6.3 - 6.9)x 10^(51) erg
(based on the fluences measured by the gamma-ray detectors of the IPN network).
GRB 070125 is among the brightest afterglows observed to date. The spectral
energy distribution implies a host extinction of Av < 0.9 mag. Two
rebrightening episodes are observed, one with excellent time coverage, showing
an increase in flux of 56% in ~8000 seconds. The evolution of the afterglow
light curve is achromatic at all times. Late-time observations of the afterglow
do not show evidence for emission from an underlying host galaxy or supernova.
Any host galaxy would be subluminous, consistent with current GRB host-galaxy
samples. Evidence for strong Mg II absorption features is not found, which is
perhaps surprising in view of the relatively high redshift of this burst and
the high likelihood for such features along GRB-selected lines of sight.Comment: 50 pages, 9 figures, 5 tables Accepted to the Astrophysical Journa
Rethinking the patient: using Burden of Treatment Theory to understand the changing dynamics of illness
<b>Background</b> In this article we outline Burden of Treatment Theory, a new model of the relationship between sick people, their social networks, and healthcare services. Health services face the challenge of growing populations with long-term and life-limiting conditions, they have responded to this by delegating to sick people and their networks routine work aimed at managing symptoms, and at retarding - and sometimes preventing - disease progression. This is the new proactive work of patient-hood for which patients are increasingly accountable: founded on ideas about self-care, self-empowerment, and self-actualization, and on new technologies and treatment modalities which can be shifted from the clinic into the community. These place new demands on sick people, which they may experience as burdens of treatment.<p></p>
<b>Discussion</b> As the burdens accumulate some patients are overwhelmed, and the consequences are likely to be poor healthcare outcomes for individual patients, increasing strain on caregivers, and rising demand and costs of healthcare services. In the face of these challenges we need to better understand the resources that patients draw upon as they respond to the demands of both burdens of illness and burdens of treatment, and the ways that resources interact with healthcare utilization.<p></p>
<b>Summary</b> Burden of Treatment Theory is oriented to understanding how capacity for action interacts with the work that stems from healthcare. Burden of Treatment Theory is a structural model that focuses on the work that patients and their networks do. It thus helps us understand variations in healthcare utilization and adherence in different healthcare settings and clinical contexts
Scleral Buckling for Primary Retinal Detachment: Outcomes of Scleral Tunnels versus Scleral Sutures
Purpose: There are primarily two techniques for affixing the scleral buckle (SB) to the sclera in the repair of rhegmatogenous retinal detachment (RRD): scleral tunnels or scleral sutures.
Methods: This retrospective study examined all patients with primary RRD who were treated with primary SB or SB combined with vitrectomy from January 1, 2015 through December 31, 2015 across six sites. Two cohorts were examined: SB affixed using scleral sutures versus scleral tunnels. Pre- and postoperative variables were evaluated including visual acuity, anatomic success, and postoperative strabismus.
Results: The mean preoperative logMAR VA for the belt loop cohort was 1.05 ± 1.06 (Snellen 20/224) and for the scleral suture cohort was 1.03 ± 1.04 (Snellen 20/214, p = 0.846). The respective mean postoperative logMAR VAs were 0.45 ± 0.55 (Snellen 20/56) and 0.46 ± 0.59 (Snellen 20/58, p = 0.574). The single surgery success rate for the tunnel cohort was 87.3% versus 88.6% for the suture cohort (p = 0.601). Three patients (1.0%) in the scleral tunnel cohort developed postoperative strabismus, but only one patient (0.1%) in the suture cohort (p = 0.04, multivariate p = 0.76). All cases of strabismus occurred in eyes that underwent SB combined with PPV (p = 0.02). There were no differences in vision, anatomic success, or strabismus between scleral tunnels versus scleral sutures in eyes that underwent primary SB.
Conclusion: Scleral tunnels and scleral sutures had similar postoperative outcomes. Combined PPV/SB in eyes with scleral tunnels might be a risk for strabismus post retinal detachment surgery
Integrated Carbon Budget Models for the Everglades Terrestrial-Coastal-Oceanic Gradient: Current Status and Needs for Inter-Site Comparisons
Recent studies suggest that coastal ecosystems can bury significantly more C than tropical forests, indicating that continued coastal development and exposure to sea level rise and storms will have global biogeochemical consequences. The Florida Coastal Everglades Long Term Ecological Research (FCE LTER) site provides an excellent subtropical system for examining carbon (C) balance because of its exposure to historical changes in freshwater distribution and sea level rise and its history of significant long-term carbon-cycling studies. FCE LTER scientists used net ecosystem C balance and net ecosystem exchange data to estimate C budgets for riverine mangrove, freshwater marsh, and seagrass meadows, providing insights into the magnitude of C accumulation and lateral aquatic C transport. Rates of net C production in the riverine mangrove forest exceeded those reported for many tropical systems, including terrestrial forests, but there are considerable uncertainties around those estimates due to the high potential for gain and loss of C through aquatic fluxes. C production was approximately balanced between gain and loss in Everglades marshes; however, the contribution of periphyton increases uncertainty in these estimates. Moreover, while the approaches used for these initial estimates were informative, a resolved approach for addressing areas of uncertainty is critically needed for coastal wetland ecosystems. Once resolved, these C balance estimates, in conjunction with an understanding of drivers and key ecosystem feedbacks, can inform cross-system studies of ecosystem response to long-term changes in climate, hydrologic management, and other land use along coastlines
- …