19 research outputs found

    Biodynamic parameters of micellar diminazene in sheep erythrocytes and blood plasma

    Get PDF
    In this work, we used a preparation of diminazene, which belongs to the group of aromatic diamidines. This compound acts on the causative agents of blood protozoan diseases produced by both flagellated protozoa (Trypanosoma) and members of the class Piroplasmida (Babesia, Theileria, and Cytauxzoon) in various domestic and wild animals, and it is widely used in veterinary medicine. We examined the behavior of water-disperse diminazene (immobilized in Tween 80 micelles) at the cellular and organismal levels. We assessed the interaction of an aqueous and a water-disperse preparation with cells of the reticuloendothelial system. We compared the kinetic parameters of aqueous and water-disperse diminazene in sheep erythrocytes and plasma. The therapeutic properties of these two preparations were also compared. We found that the surface-active substances improved intracellular penetration of the active substance through interaction with the cell membrane. In sheep blood erythrocytes, micellar diminazene accumulated more than its aqueous analog. This form was also more effective therapeutically than the aqueous analog. Our findings demonstrate that use of micellar diminazene allows the injection dose to be reduced by 30%

    Hydroxyproline-based DNA mimics provide an efficient gene silencing in vitro and in vivo

    Get PDF
    To be effective, antisense molecules should be stable in biological fluids, non-toxic, form stable and specific duplexes with target RNAs and readily penetrate through cell membranes without non-specific effects on cell function. We report herein that negatively charged DNA mimics representing chiral analogues of peptide nucleic acids with a constrained trans-4-hydroxy-N-acetylpyrrolidine-2-phosphonate backbone (pHypNAs) meet these criteria. To demonstrate this, we compared silencing potency of these compounds with that of previously evaluated as efficient gene knockdown molecules hetero-oligomers consisting of alternating phosphono-PNA monomers and PNA-like monomers based on trans-4-hydroxy-L-proline (HypNA-pPNAs). Antisense potential of pHypNA mimics was confirmed in a cell-free translation assay with firefly luciferase as well as in a living cell assay with green fluorescent protein. In both cases, the pHypNA antisense oligomers provided a specific knockdown of a target protein production. Confocal microscopy showed that pHypNAs, when transfected into living cells, demonstrated efficient cellular uptake with distribution in the cytosol and nucleus. Also, the high potency of pHypNAs for down-regulation of Ras-like GTPase Ras-dva in Xenopus embryos was demonstrated in comparison with phosphorodiamidate morpholino oligomers. Therefore, our data suggest that pHypNAs are novel antisense agents with potential widespread in vitro and in vivo applications in basic research involving live cells and intact organisms

    Development of a Novel Mathematical Model That Explains SARS-CoV-2 Infection Dynamics in Caco-2 Cells

    Get PDF
    Mathematical modeling is widely used to study within-host viral dynamics. However, to the best of our knowledge, for the case of SARS-CoV-2 such analyses were mainly conducted with the use of viral load data and for the wild type (WT) variant of the virus. In addition, only few studies analyzed models for in vitro data, which are less noisy and more reproducible. In this work we collected multiple data types for SARS-CoV-2-infected Caco-2 cell lines, including infectious virus titers, measurements of intracellular viral RNA, cell viability data and percentage of infected cells for the WT and Delta variants. We showed that standard models cannot explain some key observations given the absence of cytopathic effect in human cell lines. We propose a novel mathematical model for in vitro SARS-CoV-2 dynamics, which included explicit modeling of intracellular events such as exhaustion of cellular resources required for virus production. The model also explicitly considers innate immune response. The proposed model accurately explained experimental data. Attenuated replication of the Delta variant in Caco-2 cells could be explained by our model on the basis of just two parameters: decreased cell entry rate and increased cytokine production rate

    A Greedy Clustering Algorithm Based on Interval Pattern Concepts and the Problem of Optimal Box Positioning

    No full text
    We consider a clustering approach based on interval pattern concepts. Exact algorithms developed within the framework of this approach are unable to produce a solution for high-dimensional data in a reasonable time, so we propose a fast greedy algorithm which solves the problem in geometrical reformulation and shows a good rate of convergence and adequate accuracy for experimental high-dimensional data. Particularly, the algorithm provided high-quality clustering of tactile frames registered by Medical Tactile Endosurgical Complex

    >

    No full text

    utomated real-time classification of functional states: the significance of individual tuning stage

    No full text
    Automated classification of a human functional state is an important problem, with applications including stress resistance evaluation, supervision over operators of critical infrastructure, teaching and phobia therapy. Such classification is particularly efficient in systems for teaching and phobia therapy that include a virtual reality module, and provide the capability for dynamic adjustment of task complexity. In this paper, a method for automated real-time binary classification of human functional states (calm wakefulness vs. stress) based on discrete wavelet transform of EEG data is considered. It is shown that an individual tuning stage of the classification algorithm — a stage that allows the involvement of certain information on individual peculiarities in the classification, using very short individual learning samples, significantly increases classification reliability. The experimental study that proved this assertion was based on a specialized scenario in which individuals solved the task of detecting objects with given properties in a dynamic set of flying objects
    corecore