3 research outputs found

    Voltage-dependent behavior of a "ball-and-chain" gramicidin channel

    Get PDF
    This is the published version. Copyright 1997 by Elsevier.The channel-forming properties of two analogs of gramicidin, gramicidin-ethylenediamine (gram-EDA), and gramicidin-N,N-dimethylethylenediamine (gram-DMEDA) were studied in planar lipid bilayers, using protons as the permeant ion. These peptides have positively charged amino groups tethered to their C-terminal ends via a linker containing a carbamate group. Gram-DMEDA has two extra methyl groups attached to the terminal amino group, making it a bulkier derivative. The carbamate groups undergo thermal cis-trans isomerization on the 10–100-ms time scale. The conductance behavior of gram-EDA is found to be markedly voltage dependent, whereas the behavior of gram-DMEDA is not. In addition, voltage affects the cis-trans ratios of the carbamate groups of gram-EDA, but not those of gram-DMEDA. A model is proposed to account for these observations, in which voltage can promote the binding of the terminal amino group of gram-EDA to the pore in a "ball-and-chain" fashion. The bulkiness of the gram-DMEDA derivative prevents this binding

    Voltage-dependent behavior of a ball-and-chain gramicidin channel, Biophys

    No full text
    ABSTRACT The channel-forming properties of two analogs of gramicidin, gramicidin-ethylenediamine (gram-EDA), and gramicidin-N,N-dimethylethylenediamine (gram-DMEDA) were studied in planar lipid bilayers, using protons as the permeant ion. These peptides have positively charged amino groups tethered to their C-terminal ends via a linker containing a carbamate group. Gram-DMEDA has two extra methyl groups attached to the terminal amino group, making it a bulkier derivative. The carbamate groups undergo thermal cis-trans isomerization on the 10-100-ms time scale. The conductance behavior of gram-EDA is found to be markedly voltage dependent, whereas the behavior of gram-DMEDA is not. In addition, voltage affects the cis-trans ratios of the carbamate groups of gram-EDA, but not those of gram-DMEDA. A model is proposed to account for these observations, in which voltage can promote the binding of the terminal amino group of gram-EDA to the pore in a "ball-and-chain" fashion. The bulkiness of the gram-DMEDA derivative prevents this binding
    corecore