344 research outputs found

    Stellar Population Effects on the Inferred Photon Density at Reionization

    Get PDF
    The relationship between stellar populations and the ionizing flux with which they irradiate their surroundings has profound implications for the evolution of the intergalactic medium. We quantify the ionizing flux arising from synthetic stellar populations which incorporate the evolution of interacting binary stars. We determine that these show ionizing flux boosted by 60 per cent at 0.05 < Z < 0.3 Z_sun and a more modest 10-20 per cent at near-Solar metallicities relative to star-forming populations in which stars evolve in isolation. The relation of ionizing flux to observables such as 1500A continuum and ultraviolet spectral slope is sensitive to attributes of the stellar population including age, star formation history and initial mass function. For a galaxy forming 1 M_sun yr^{-1}, observed at > 100 Myr after the onset of star formation, we predict a production rate of photons capable of ionizing hydrogen, N_ion = 1.4 x 10^{53} s^{-1} at Z = Z_sun and 3.5 x 10^{53} s^{-1} at 0.1 Z_sun, assuming a Salpeter-like initial mass function. We evaluate the impact of these issues on the ionization of the intergalactic medium, finding that the known galaxy populations can maintain the ionization state of the Universe back to z ~ 9, assuming that their luminosity functions continue to M_UV = -10, and that constraints on the intergalactic medium at z ~ 2 - 5 can be satisfied with modest Lyman continuum photon escape fractions of 4 - 24 per cent depending on assumed metallicity.Comment: 17 pages, accepted by MNRAS. BPASS models can be found at http://bpass.auckland.ac.nz

    Radio Observations of GRB Host Galaxies

    Full text link
    We present 5.5 and 9.0 GHz observations of a sample of seventeen GRB host galaxies at 0.5<z<1.4, using the radio continuum to explore their star formation properties in the context of the small but growing sample of galaxies with similar observations. Four sources are detected, one of those (GRB 100418A) likely due to lingering afterglow emission. We suggest that the previously-reported radio afterglow of GRB 100621A may instead be due to host galaxy flux. We see no strong evidence for redshift evolution in the typical star formation rate of GRB hosts, but note that the fraction of `dark' bursts with detections is higher than would be expected given constraints on the more typical long GRB population. We also determine the average radio-derived star formation rates of core collapse supernovae at comparable redshift, and show that these are still well below the limits obtained for GRB hosts, and show evidence for a rise in typical star formation rate with redshift in supernova hosts.Comment: 15 pages, MNRAS accepte

    Towards the origin of the radio emission in AR Sco, the first radio-pulsing white dwarf binary

    Full text link
    The binary system AR Sco contains an M star and the only known radio-pulsing white dwarf. The system shows emission from radio to X-rays, likely dominated by synchrotron radiation. The mechanism that produces most of this emission remains unclear. Two competing scenarios have been proposed: Collimated outflows, and direct interaction between the magnetospheres of the white dwarf and the M star. The two proposed scenarios can be tested via very long baseline interferometric radio observations. We conducted a radio observation with the Australian Long Baseline Array (LBA) on 20 Oct 2016 at 8.5 GHz to study the compactness of the radio emission. Simultaneous data with the Australian Telescope Compact Array (ATCA) were also recorded for a direct comparison of the obtained flux densities. AR Sco shows radio emission compact on milliarcsecond angular scales (≲0.02 AU\lesssim 0.02\ \mathrm{AU}, or $4\ \mathrm{R_{\odot}}).Theemissionisorbitallymodulated,withanaveragefluxdensityof). The emission is orbitally modulated, with an average flux density of \approx 6.5\ \mathrm{mJy}$. A comparison with the simultaneous ATCA data shows that no flux is resolved out on mas scales, implying that the radio emission is produced in this compact region. Additionally, the obtained radio light curves on hour timescales are consistent with the optical light curve. The radio emission in AR Sco is likely produced in the magnetosphere of the M star or the white dwarf, and we see no evidence for a radio outflow or collimated jets significantly contributing to the radio emission.Comment: 4 pages, 2 figures, accepted for publication in A&

    Evaluating the impact of binary parameter uncertainty on stellar population properties

    Get PDF
    Binary stars have been shown to have a substantial impact on the integrated light of stellar populations, particularly at low metallicity and early ages - conditions prevalent in the distant Universe. But the fraction of stars in stellar multiples as a function of mass, their likely initial periods and distribution of mass ratios are all known empirically from observations only in the local Universe. Each has associated uncertainties. We explore the impact of these uncertainties in binary parameters on the properties of integrated stellar populations, considering which properties and timescales are most susceptible to uncertainty introduced by binary fractions and whether observations of the integrated light might be sufficient to determine binary parameters. We conclude that the effects of uncertainty in the empirical binary parameter distributions are likely smaller than those introduced by metallicity and stellar population age uncertainties for observational data. We identify emission in the He II 1640Ã… emission line and continuum colour in the ultraviolet-optical as potential indicators of a high mass binary presence, although poorly constrained metallicity, dust extinction and degeneracies in plausible star formation history are likely to swamp any measurable signal

    Exploring the impact of IMF and binary parameter stochasticity with a binary population synthesis code

    Get PDF
    Low mass star formation regions are unlikely to fully populate their initial mass functions, leading to a deficit of massive stars. In binary stellar populations, the full range of binary separations and mass ratios will also be underpopulated. To explore the effects of stochastic sampling in the integrated light of stellar clusters, we calculate models at a broad range of cluster masses, from 10^2 to 10^7 M_sun, using a binary stellar population synthesis code. For clusters with stellar masses less than 10^5 M_sun, observable quantities show substantial scatter and their mean properties reflect the expected deficit of massive stars. In common with previous work, we find that purely stochastic sampling of the initial mass function appears to underestimate the mass of the most massive star in known clusters. However, even with this constraint, the majority of clusters likely inject sufficient kinetic energy to clear their birth clusters of gas. For quantities which directly measure the impact of the most massive stars, such as N_{ion}, xi_{ion} and beta_{UV}, uncertainties due to stochastic sampling dominate over those from the IMF shape or distribution of binary parameters, while stochastic sampling has a negligible effect on the stellar continuum luminosity density.Comment: 15 pages and 8 page appendix. Accepted for publication in MNRA

    Exploring the Evolution of Dust Temperature using Spectral Energy Distribution Fitting in a Large Photometric Survey

    Full text link
    Panchromatic analysis of galaxy spectral energy distributions, spanning from the ultraviolet to the far-infrared, probes not only the stellar population but also the properties of interstellar dust through its extinction and long-wavelength reemission. However little work has exploited the full power of such fitting to constrain the redshift evolution of dust temperature in galaxies. To do so, we simultaneously fit ultraviolet, optical and infrared observations of stacked galaxy subsamples at a range of stellar masses and photometric redshifts at 0<zz<5, using an energy-balance formalism. However, we find UV-emission beyond the Lyman limit in some photometric redshift selected galaxy subsamples, giving rise to the possibility of contaminated observations. We carefully define a robust, clean subsample which extends to no further than zz~2. This has consistently lower derived temperatures by 4.0−1.9+5.04.0^{+5.0}_{-1.9} K, relative to the full sample. We find a linear increase in dust temperature with redshift, with Td(z)=(4.8±1.5)×z+(26.2±1.5)T_d(z)=(4.8\pm1.5) \times z + (26.2\pm1.5) K. Our inferred temperature evolution is consistent with a modest rise in dust temperature with redshift, but inconsistent with some previous analyses. We also find a majority of photometrically-selected subsamples at zz>4.5 under-predict the IR emission while giving reasonable fits to the UV-optical. This could be due to a spatial disconnect in the locations of the UV and IR emission peaks, suggesting that an energy-balance formalism may not always be applicable in the distant Universe.Comment: 16 Pages, 9 Figures + appendix, accepted for publication in MNRA

    The detection of FIR emission from high redshift star-forming galaxies in the ECDF-S

    Full text link
    ABRIDGED: We have used the LABOCA Survey of the ECDF-S (LESS) to investigate rest-frame FIR emission from typical SF systems (LBGs) at redshift 3, 4, and 5. We initially concentrate on LBGs at z~3 and select three subsamples on stellar mass, extinction corrected SF and rest-frame UV-magnitude. We produce composite 870micron images of the typical source in our subsamples, obtaining ~4sigma detections and suggesting a correlation between FIR luminosity and stellar mass. We apply a similar procedure to our full samples at z~3, 4, 4.5 and 5 and do not obtain detections - consistent with a simple scaling between FIR luminosity and stellar mass. In order to constrain the FIR SED of these systems we explore their emission at multiple wavelengths spanning the peak of dust emission at z~3 using the Herschel SPIRE observations of the field. We obtain detections at multiple wavelengths for both our stellar mass and UV-magnitude selected samples, and find a best-fit SED with T_dust in the ~33-41K range. We calculate L_FIR, obscured SFRs and M_dust, and find that a significant fraction of SF in these systems is obscured. Interestingly, our extinction corrected SFR sample does not display the large FIR fluxes predicted from its red UV-spectral slope. This suggests that the method of assuming an intrinsic UV-slope and correcting for dust attenuation may be invalid for this sample - and that these are not in fact the most actively SF systems. All of our z~3 samples fall on the `main sequence' of SF galaxies at z~3 and our detected subsamples are likely to represent the high obscuration end of LBGs at their epoch. We compare the FIR properties of our subsamples with various other populations, finding that our stellar mass selected sample shows similar FIR characteristics to SMGs at the same epoch and therefore potentially represents the low L_FIR end of the high redshift FIR luminosity function.Comment: 18 pages, 10 figure, MNRAS accepted, corrected typos, acknowledgements adde

    Swift J1112.2-8238: A Candidate Relativistic Tidal Disruption Flare

    Get PDF
    We present observations of Swift J1112.2-8238, and identify it as a candidate relativistic tidal disruption flare (rTDF). The outburst was first detected by Swift/BAT in June 2011 as an unknown, long-lived (order of days) γ\gamma-ray transient source. We show that its position is consistent with the nucleus of a faint galaxy for which we establish a likely redshift of z=0.89z=0.89 based on a single emission line that we interpret as the blended [OII]λ3727\lambda3727 doublet. At this redshift, the peak X/γ\gamma-ray luminosity exceeded 104710^{47} ergs s−1^{-1}, while a spatially coincident optical transient source had i′∼22i^{\prime} \sim 22 (Mg∼−21.4_g \sim -21.4 at z=0.89z=0.89) during early observations, ∼20\sim 20 days after the Swift trigger. These properties place Swift J1112.2-8238 in a very similar region of parameter space to the two previously identified members of this class, Swift J1644+57 and Swift J2058+0516. As with those events the high-energy emission shows evidence for variability over the first few days, while late time observations, almost 3 years post-outburst, demonstrate that it has now switched off. Swift J1112.2-8238 brings the total number of such events observed by Swift to three, interestingly all detected by Swift over a ∼\sim3 month period (<3%<3\% of its total lifetime as of March 2015). While this suggests the possibility that further examples may be uncovered by detailed searches of the BAT archives, the lack of any prime candidates in the years since 2011 means these events are undoubtedly rare.Comment: 11 pages, 5 figures, accepted for publication by MNRA
    • …
    corecore