6 research outputs found

    Startle response related genes

    Get PDF
    The startle reaction (also known as the startle response, the startle reflex, or the alarm reaction) is the psychological and physiological response to a sudden unexpected stimulus, such as a flash of light, a loud noise (acoustic startle reflex), or a quick movement near the face. Abnormalities of startle response have been observed in many stress-related mental disorders, such as schizophrenia and post-traumatic stress disorder (PTSD). However, the molecular mechanisms of startle in stress-associated conditions – for example, whether the startle reaction is associated with any gene variance – is still unknown. In this paper, we will carry out a systematic review by retrieving, assessing, and combining, when applicable, individual studies investigating association of the molecular variation of candidate gene with the startle response. The systematic review is based on the search for numerous publications using the keywords ‘‘startle gene’’ on September 15, 2010 using PubMed, which comprises more than 20 million citations for biomedical literature from MEDLINE and life science journals. A total of 486 publications regarding genes associated with startle have been obtained and reviewed here. There are fewer than 20 publications associating genes with the startle response between 1979, when the first valuable paper was published, and 1999. However, publications have dramatically increase from 2001 and reaches over 70 in 2009. We have characterized them into three categories: startle-associated gene studies in humans, in animals, as well as in both human and animals. This review of research strategy may provide the information for identifying a biomarker for startle response, with the objective of translating research into clinical utility: diagnosis and treatment of stress-induced mental disorders

    Startle response related genes

    Get PDF
    The startle reaction (also known as the startle response, the startle reflex, or the alarm reaction) is the psychological and physiological response to a sudden unexpected stimulus, such as a flash of light, a loud noise (acoustic startle reflex), or a quick movement near the face. Abnormalities of startle response have been observed in many stress-related mental disorders, such as schizophrenia and post-traumatic stress disorder (PTSD). However, the molecular mechanisms of startle in stress-associated conditions – for example, whether the startle reaction is associated with any gene variance – is still unknown. In this paper, we will carry out a systematic review by retrieving, assessing, and combining, when applicable, individual studies investigating association of the molecular variation of candidate gene with the startle response. The systematic review is based on the search for numerous publications using the keywords ‘‘startle gene’’ on September 15, 2010 using PubMed, which comprises more than 20 million citations for biomedical literature from MEDLINE and life science journals. A total of 486 publications regarding genes associated with startle have been obtained and reviewed here. There are fewer than 20 publications associating genes with the startle response between 1979, when the first valuable paper was published, and 1999. However, publications have dramatically increase from 2001 and reaches over 70 in 2009. We have characterized them into three categories: startle-associated gene studies in humans, in animals, as well as in both human and animals. This review of research strategy may provide the information for identifying a biomarker for startle response, with the objective of translating research into clinical utility: diagnosis and treatment of stress-induced mental disorders

    Posttraumatic Stress Disorder Biomarker — p11

    Get PDF
    Post-traumatic stress disorder (PTSD) is a chronic and disabling anxiety disorder associated with a traumatic event [1]. It is linked to increased risk of suicide and deficits in social functioning [2, 3]. Despite extensive study in psychiatry, the underlying mechanisms of PTSD are still poorly understood [4, 5]. Currently, the diagnosis for PTSD is based on clinical observation and symptom checklist [4, 6-8] and no laboratory blood-based tests. Although biomarker discovery for PTSD is not easy [8], a reliable biomarker would significantly impact the diagnosis and therapeutic monitoring of PTSD. Developing interventions to identify and treat PTSD requires objective approaches to determining the presence of PTSD [8]. Substantial data indicate several potential biomarkers for PTSD. Of these candidate markers, p11 (S100A10) has been studied in PTSD animal models [7] and in human subjects with PTSD [6]. We found that p11 is over-expressed in both animal models and post-mortem brains of subjects with PTSD [7]. Incorporating testing of p11, a novel biomarker for PTSD, into clinical practice, along with more subjective measures, such as participants’ medical history, mental status, duration of symptoms, and symptom checklist or self-report, would provide additional power to predict impending PTSD. In this chapter, we discuss the biomarker concept and the potential clinical utility of PTSD biomarkers. We further discuss the potential of p11 as a PTSD biomarker and as a tool that may enhance PTSD diagnosis and intervention in health care practice
    corecore