245 research outputs found

    Localization of Cortical Oscillations Induced by SCS Using Coherence

    Get PDF
    This paper suggests a method based on coherence analysis and scalp mapping of coherence suitable for more accurate localization of cortical oscillations induced by electric stimulation of the dorsal spinal cord (SCS), which were previously detected using spectral analysis. While power spectral density shows the increase of power during SCS only at small number of electrodes, coherence extends this area and sharpens its boundary simultaneously. Parameters of the method were experimentally optimized to maximize its reliability. SCS is applied to suppress chronic, intractable pain by patients, whom pharmacotherapy does not relieve. In our study, the pain developed in lower back and lower extremity as the result of unsuccessful vertebral discotomy, which is called failed-back surgery syndrome (FBSS). Our method replicated the results of previous analysis using PSD and extended them with more accurate localization of the area influenced by SCS

    Pain Catastrophising Affects Cortical Responses to Viewing Pain in Others

    Get PDF
    Pain catastrophising is an exaggerated cognitive attitude implemented during pain or when thinking about pain. Catastrophising was previously associated with increased pain severity, emotional distress and disability in chronic pain patients, and is also a contributing factor in the development of neuropathic pain. To investigate the neural basis of how pain catastrophising affects pain observed in others, we acquired EEG data in groups of participants with high (High-Cat) or low (Low-Cat) pain catastrophising scores during viewing of pain scenes and graphically matched pictures not depicting imminent pain. The High-Cat group attributed greater pain to both pain and non-pain pictures. Source dipole analysis of event-related potentials during picture viewing revealed activations in the left (PHGL) and right (PHGR) paraphippocampal gyri, rostral anterior (rACC) and posterior cingulate (PCC) cortices. The late source activity (600-1100 ms) in PHGL and PCC was augmented in High-Cat, relative to Low-Cat, participants. Conversely, greater source activity was observed in the Low-Cat group during the mid-latency window (280-450 ms) in the rACC and PCC. Low-Cat subjects demonstrated a significantly stronger correlation between source activity in PCC and pain and arousal ratings in the long latency window, relative to high pain catastrophisers. Results suggest augmented activation of limbic cortex and higher order pain processing cortical regions during the late processing period in high pain catastrophisers viewing both types of pictures. This pattern of cortical activations is consistent with the distorted and magnified cognitive appraisal of pain threats in high pain catastrophisers. In contrast, high pain catastrophising individuals exhibit a diminished response during the mid-latency period when attentional and top-down resources are ascribed to observed pain

    EEG Signal Classification: Introduction to the Problem

    Get PDF
    The contribution describes the design, optimization and verification of the off-line single-trial movement classification system. Four types of movements are used for the classification: the right index finger extension vs. flexion as well as the right shoulder (proximal) vs. right index finger (distal) movement. The classification system utilizes hidden information stored in the characteristic shapes of human brain activity (EEG signal). The great variability of EEG potentials requires using of context information and hence the classifier based on Hidden Markov Models (HMM). The suitable parameterization, model structure as well as training and classification process are suggested on the base of spectral analysis results and experience with the speech recognition. The training and the classification are performed with the disjoint sets of EEG realizations. Classification experiments are performed with 10 randomly chosen sets of EEG realizations. The final average score of the distal/proximal movement classification is 80%; the standard deviation of classification results is 9%. The classification of the extension / flexion gives comparable results

    Detection of Cortical Oscillations Induced by SCS Using Power Spectral Density

    Get PDF
    Chronic, intractable pain of lower back and lower extremity might develop as the result of unsuccessful surgery of back. This state called failed-back surgery syndrome (FBSS) cannot be effectively treated by pharmacotherapy. Electric stimulation of the dorsal spinal cord is applied to relieve the pain. According to the medical hypothesis, oscillatory activity, which might be related to the analgesic effects, may occur in the cortex during the stimulation. To confirm the presence of the SCS induced oscillations, a new method of detection was designed for this purpose. The analysis of EEG data was performed using power spectral density, confidence intervals, visualization and group statistic for its verification. Parameters of the method were experimentally optimized to maximize its reliability. During ongoing SCS, statistically significant changes were detected and localized at the stimulation frequency and/or its subharmonic or upper harmonic over central midline electrodes in eight patients

    Cortical Activation Changes during Repeated Laser Stimulation: A Magnetoencephalographic Study

    Get PDF
    Repeated warm laser stimuli produce a progressive increase of the sensation of warmth and heat and eventually that of a burning pain. The pain resulting from repetitive warm stimuli is mediated by summated C fibre responses. To shed more light on the cortical changes associated with pain during repeated subnoxious warm stimution, we analysed magnetoencephalographic (MEG) evoked fields in eleven subjects during application of repetitive warm laser stimuli to the dorsum of the right hand. One set of stimuli encompassed 10 laser pulses occurring at 2.5 s intervals. Parameters of laser stimulation were optimised to elicit a pleasant warm sensation upon a single stimulus with a rise of skin temperature after repeated stimulation not exceeding the threshold of C mechano-heat fibres. Subjects reported a progressive increase of the intensity of heat and burning pain during repeated laser stimulation in spite of only mild (4.8°C) increase of skin temperature from the first stimulus to the tenth stimulus. The mean reaction time, evaluated in six subjects, was 1.33 s, confirming involvement of C fibres. The neuromagnetic fields were modelled by five equivalent source dipoles located in the occipital cortex, cerebellum, posterior cingulate cortex, and left and right operculo-insular cortex. The only component showing statistically significant changes during repetitive laser stimulation was the late component of the contralateral operculo-insular source peaking at 1.05 s after stimulus onset. The amplitude increases of the late component of the contralateral operculo-insular source dipole correlated with the subjects' numerical ratings of warmth and pain. Results point to a pivotal role of the contralateral operculo-insular region in processing of C-fibre mediated pain during repeated subnoxious laser stimulation

    Data to support observation of late and ultra-late latency components of cortical laser evoked potentials

    Get PDF
    open access articleData are provided to document the presence of late and ultra-late latency components of cortical laser evoked potentials (LEPs) following noxious laser stimulus in Stancak et al. (2015) [3]. The latency components, labeled provisionally as N4, N5, and N6, were observed in 16 healthy human participants who were asked to fully attend their painful and non-painful sensations occurring in association with noxious laser stimulus. Individual laser evoked potential waveforms are provided in support of this observation. Data provided demonstrate the cortical sources of the late and ultra-late laser evoked potentials. The cortical sources of LEPs were reconstructed using the standardized Low Resolution Electromagnetic Tomography (sLORETA) method

    Altered cortical processing of observed pain in patients with fibromyalgia syndrome

    Get PDF
    Fibromyalgia syndrome (FMS) is characterized by widespread chronic pain, fatigue, sleep disorders, and cognitive-emotional disturbance. Patients with FMS exhibit increased sensitivity to experimental pain and pain-related cues, as well as deficits in emotional regulation. The present study investigated the spatiotemporal patterns of brain activations for observed pain in 19 patients with FMS and 18 age-matched, healthy control individuals using event-related potential analysis. Patients with FMS attributed greater pain and unpleasantness to pain pictures, relative to healthy control participants. An augmented late positive potential (LPP) component (>500 milliseconds) was found in patients viewing both pain and nonpain pictures, and this amplitude difference in the LPP covaried with perceived unpleasantness of pictures. Mid-latency potentials (250–450 milliseconds) demonstrated similar amplitude increases of positive potentials in the FMS patient group. By contrast, the short-latency positive potential (140 milliseconds) was reduced in patients with FMS relative to healthy control participants. Results suggest amplitude increases to mid- to long-latency cortical activations in patients with FMS, which are known to reflect emotional control and motivational salience of stimuli. Perspective Patients with FMS demonstrate increased activations associated with pain and nonpain pictures. The findings suggest that even innocuous, everyday visual stimuli with somatic connotations may challenge the emotional state of patients with FMS. Our study points toward the importance of cognitive-emotional therapeutic approaches for the treatment of FMS
    corecore