307 research outputs found

    Head-on collision of viscous vortex rings

    Get PDF
    The head-on collision of two identical axisymmetric viscous vortex rings is studied through direct simulations of the incompressible Navier-Stokes equations. The initial vorticity distributions considered are those of Hill's spherical vortex and of rings with circular Gaussian cores, each at Reynolds numbers of about 350 and 1000. The Reynolds number is defined by Gamma/Nu, the ratio of circulation to viscosity. As the vortices approach each other by self-induction, the radii increase by mutual induction, and vorticy cancels through viscous cross-diffusion across the collision plane. Following contact, the vorticity distribution in the core forms a head-tail structure (for the cases considered). The characteristic time of vorticity annihilation is compared with that of a 3D collision experiment and 3D numerical simulations. It is found that the annihilation time is somewhat longer in the axisymmetric case than it is in the symmetry plane of the experiment and 3D numerical simulation. By comparing the annihilatiom time with a viscous timescale and a circulation timescale, it is deduced that both the strain rate due to local effects and to 3D vorticity realignment are important

    A numerical study of viscous vortex rings using a spectral method

    Get PDF
    Viscous, axisymmetric vortex rings are investigated numerically by solving the incompressible Navier-Stokes equations using a spectral method designed for this type of flow. The results presented are axisymmetric, but the method is developed to be naturally extended to three dimensions. The spectral method relies on divergence-free basis functions. The basis functions are formed in spherical coordinates using Vector Spherical Harmonics in the angular directions, and Jacobi polynomials together with a mapping in the radial direction. Simulations are performed of a single ring over a wide range of Reynolds numbers (Re approximately equal gamma/nu), 0.001 less than or equal to 1000, and of two interacting rings. At large times, regardless of the early history of the vortex ring, it is observed that the flow approaches a Stokes solution that depends only on the total hydrodynamic impulse, which is conserved for all time. At small times, from an infinitely thin ring, the propagation speeds of vortex rings of varying Re are computed and comparisons are made with the asymptotic theory by Saffman. The results are in agreement with the theory; furthermore, the error is found to be smaller than Saffman's own estimate by a factor square root ((nu x t)/R squared) (at least for Re=0). The error also decreases with increasing Re at fixed core-to-ring radius ratio, and appears to be independent of Re as Re approaches infinity). Following a single ring, with Re=500, the vorticity contours indicate shedding of vorticity into the wake and a settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we consider the case of leapfrogging vortex rings with Re=1000. The results show severe straining of the inner vortex core in the first pass and merging of the two cores during the second pass

    A note on leapfrogging vortex rings

    Get PDF
    In this paper we provide examples, by numerical simulation using the Navier-Stokes equations for axisymmetric laminar flow, of the 'leapfrogging' motion of two, initially identical, vortex rings which share a common axis of symmetry. We show that the number of clear passes that each ring makes through the other increases with Reynolds number, and that as long as the configuration remains stable the two rings ultimately merge to form a single vortex ring

    Mortality and Disability-adjusted Life-years (DALYs) for common neglected tropical Diseases in Ethiopia, 1990 to 2015: evidence from the Global Burden of Disease Study 2015

    Get PDF
    Introduction: Neglected tropical diseases (NTDs) are important public health problems in Ethiopia. In 2013, the Federal Ministry of Health (FMOH) has launched a national NTD master plan to eliminate major NTDs of public health importance by 2020. Benchmarking the current status of NTDs in the country is important to monitor and evaluate the progress in the implementation of interventions and their impacts. Therefore, this study aims to assess the trends of mortality and Disability-adjusted Life-Years (DALY) for the priority NTDs over the last 25 years. Methods: We used the Global Burden of Disease (GBD) 2015 estimates for this study. The GBD 2015 data source for cause of death and DALY estimation included verbal autopsy (VA), Demographic and Health Surveys (DHS), malaria indicator surveys (MICS) and other disease specific surveys, Ministry of Health reports submitted to United Nations (UN) agencies and published scientific articles. Cause of Death Ensemble modeling (CODEm) and/or natural history models were used to estimate malaria and NTDs mortality rates. DALY were estimated as the sum of Years of Life Lost (YLL) due to premature mortality and Years Lived with Disability (YLD). Results: All NTDs caused an estimated of 6,293 deaths (95% uncertainty interval (UI): 3699 – 10,080) in 1990 and 3,593 deaths (95% UI: 2051 – 6178) in 2015, a 70% reduction over the 25 years. Age-standardised mortality rates due to schistosomiasis, STH and leshmaniasis have declined by 91.3%, 73.5% and 21.6% respectively between 1990 to 2015. The number of DALYs due to all NTDs has declined from 814.4 thousand (95% UI: 548 thousand–1.2 million) in 1990 to 579.5 thousand (95%UI: 309.4 thousand – 1.3 million) in 2015. Age-standardised DALY rates due to all NTDs declined by 30.4%, from 17.6 per 1000(95%UI: 12.5-26.5) in 1990 to 12.2 per 1000(95%UI: 6.5 – 27.4) in 2015. Age-standardised DALY rate for trachoma declined from 92.7 per 100,000(95% UI: 63.2 – 128.4) in 1990 to 41.2 per 100,000(95%UI: 27.4 – 59.2) in 2015, a 55.6% reduction between 1990 and 2015. Age-standardised DALY rates for onchocerciasis, schistosomiasis and lymphiatic filariasis decreased by 66.2%, 29.4% and 12.5% respectively between 1990 and 2015. DALY rate for ascariasis fell by 56.8% over the past 25 years. Conclusions: Ethiopia has made a remarkable progress in reducing the DALY rates for most of the NTDs over the last 25 years. The rapid scale of interventions and broader system strengthening may have a lasting impact on achieving the 2020 goal of elimination of most of NTDs. Ethiopia should strengthen the coverage of integrated interventions of NTD through proper coordination with other health programs and sectors and community participation to eliminate NTDs by 2020

    Genome-wide association study identifies loci associated with liability to alcohol and drug dependence that is associated with variability in reward-related ventral striatum activity in African- and European-Americans.

    Get PDF
    Genetic influences on alcohol and drug dependence partially overlap, however, specific loci underlying this overlap remain unclear. We conducted a genome-wide association study (GWAS) of a phenotype representing alcohol or illicit drug dependence (ANYDEP) among 7291 European-Americans (EA; 2927 cases) and 3132 African-Americans (AA: 1315 cases) participating in the family-based Collaborative Study on the Genetics of Alcoholism. ANYDEP was heritable (h 2 in EA = 0.60, AA = 0.37). The AA GWAS identified three regions with genome-wide significant (GWS; P < 5E-08) single nucleotide polymorphisms (SNPs) on chromosomes 3 (rs34066662, rs58801820) and 13 (rs75168521, rs78886294), and an insertion-deletion on chromosome 5 (chr5:141988181). No polymorphisms reached GWS in the EA. One GWS region (chromosome 1: rs1890881) emerged from a trans-ancestral meta-analysis (EA + AA) of ANYDEP, and was attributable to alcohol dependence in both samples. Four genes (AA: CRKL, DZIP3, SBK3; EA: P2RX6) and four sets of genes were significantly enriched within biological pathways for hemostasis and signal transduction. GWS signals did not replicate in two independent samples but there was weak evidence for association between rs1890881 and alcohol intake in the UK Biobank. Among 118 AA and 481 EA individuals from the Duke Neurogenetics Study, rs75168521 and rs1890881 genotypes were associated with variability in reward-related ventral striatum activation. This study identified novel loci for substance dependence and provides preliminary evidence that these variants are also associated with individual differences in neural reward reactivity. Gene discovery efforts in non-European samples with distinct patterns of substance use may lead to the identification of novel ancestry-specific genetic markers of risk

    Impacts of air pollutants from rural Chinese households under the rapid residential energy transition

    Get PDF
    Rural residential energy consumption in China is experiencing a rapid transition towards clean energy, nevertheless, solid fuel combustion remains an important emission source. Here we quantitatively evaluate the contribution of rural residential emissions to PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 μm) and the impacts on health and climate. The clean energy transitions result in remarkable reductions in the contributions to ambient PM2.5, avoiding 130,000 (90,000-160,000) premature deaths associated with PM2.5 exposure. The climate forcing associated with this sector declines from 0.057 ± 0.016 W/m2 in 1992 to 0.031 ± 0.008 W/m2 in 2012. Despite this, the large remaining quantities of solid fuels still contributed 14 ± 10 μg/m3 to population-weighted PM2.5 in 2012, which comprises 21 ± 14% of the overall population-weighted PM2.5 from all sources. Rural residential emissions affect not only rural but urban air quality, and the impacts are highly seasonal and location dependent

    Hemoglobin Promotes Staphylococcus aureus Nasal Colonization

    Get PDF
    Staphylococcus aureus nasal colonization is an important risk factor for community and nosocomial infection. Despite the importance of S. aureus to human health, molecular mechanisms and host factors influencing nasal colonization are not well understood. To identify host factors contributing to nasal colonization, we collected human nasal secretions and analyzed their ability to promote S. aureus surface colonization. Some individuals produced secretions possessing the ability to significantly promote S. aureus surface colonization. Nasal secretions pretreated with protease no longer promoted S. aureus surface colonization, suggesting the involvement of protein factors. The major protein components of secretions were identified and subsequent analysis revealed that hemoglobin possessed the ability to promote S. aureus surface colonization. Immunoprecipitation of hemoglobin from nasal secretions resulted in reduced S. aureus surface colonization. Furthermore, exogenously added hemoglobin significantly decreased the inoculum necessary for nasal colonization in a rodent model. Finally, we found that hemoglobin prevented expression of the agr quorum sensing system and that aberrant constitutive expression of the agr effector molecule, RNAIII, resulted in reduced nasal colonization of S. aureus. Collectively our results suggest that the presence of hemoglobin in nasal secretions contributes to S. aureus nasal colonization

    Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2·5 air pollution, 1990–2019: an analysis of data from the Global Burden of Disease Study 2019

    Get PDF
    Background: Experimental and epidemiological studies indicate an association between exposure to particulate matter (PM) air pollution and increased risk of type 2 diabetes. In view of the high and increasing prevalence of diabetes, we aimed to quantify the burden of type 2 diabetes attributable to PM2·5 originating from ambient and household air pollution. Methods: We systematically compiled all relevant cohort and case-control studies assessing the effect of exposure to household and ambient fine particulate matter (PM2·5) air pollution on type 2 diabetes incidence and mortality. We derived an exposure–response curve from the extracted relative risk estimates using the MR-BRT (meta-regression—Bayesian, regularised, trimmed) tool. The estimated curve was linked to ambient and household PM2·5 exposures from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019, and estimates of the attributable burden (population attributable fractions and rates per 100 000 population of deaths and disability-adjusted life-years) for 204 countries from 1990 to 2019 were calculated. We also assessed the role of changes in exposure, population size, age, and type 2 diabetes incidence in the observed trend in PM2·5-attributable type 2 diabetes burden. All estimates are presented with 95% uncertainty intervals. Findings: In 2019, approximately a fifth of the global burden of type 2 diabetes was attributable to PM2·5 exposure, with an estimated 3·78 (95% uncertainty interval 2·68–4·83) deaths per 100 000 population and 167 (117–223) disability-adjusted life-years (DALYs) per 100 000 population. Approximately 13·4% (9·49–17·5) of deaths and 13·6% (9·73–17·9) of DALYs due to type 2 diabetes were contributed by ambient PM2·5, and 6·50% (4·22–9·53) of deaths and 5·92% (3·81–8·64) of DALYs by household air pollution. High burdens, in terms of numbers as well as rates, were estimated in Asia, sub-Saharan Africa, and South America. Since 1990, the attributable burden has increased by 50%, driven largely by population growth and ageing. Globally, the impact of reductions in household air pollution was largely offset by increased ambient PM2·5. Interpretation: Air pollution is a major risk factor for diabetes. We estimated that about a fifth of the global burden of type 2 diabetes is attributable PM2·5 pollution. Air pollution mitigation therefore might have an essential role in reducing the global disease burden resulting from type 2 diabetes. Funding: Bill & Melinda Gates Foundation
    corecore