3,475 research outputs found
Quantum states and specific heat of low-density He gas adsorbed within the carbon nanotube interstitial channels: Band structure effects and potential dependence
We calculate the energy-band structure of a He atom trapped within the
interstitial channel between close-packed nanotubes within a bundle and its
influence on the specific heat of the adsorbed gas. A robust prediction of our
calculations is that the contribution of the low-density adsorbed gas to the
specific heat of the nanotube material shows pronounced nonmonotonic variations
with temperature. These variations are shown to be closely related to the band
gaps in the adsorbate density of states
Quasi one dimensional He inside carbon nanotubes
We report results of diffusion Monte Carlo calculations for both He
absorbed in a narrow single walled carbon nanotube (R = 3.42 \AA) and strictly
one dimensional He. Inside the tube, the binding energy of liquid He is
approximately three times larger than on planar graphite. At low linear
densities, He in a nanotube is an experimental realization of a
one-dimensional quantum fluid. However, when the density increases the
structural and energetic properties of both systems differ. At high density, a
quasi-continuous liquid-solid phase transition is observed in both cases.Comment: 11 pages, 3ps figures, to appear in Phys. Rev. B (RC
Approximations for many-body Green's functions: insights from the fundamental equations
Several widely used methods for the calculation of band structures and photo
emission spectra, such as the GW approximation, rely on Many-Body Perturbation
Theory. They can be obtained by iterating a set of functional differential
equations relating the one-particle Green's function to its functional
derivative with respect to an external perturbing potential. In the present
work we apply a linear response expansion in order to obtain insights in
various approximations for Green's functions calculations. The expansion leads
to an effective screening, while keeping the effects of the interaction to all
orders. In order to study various aspects of the resulting equations we
discretize them, and retain only one point in space, spin, and time for all
variables. Within this one-point model we obtain an explicit solution for the
Green's function, which allows us to explore the structure of the general
family of solutions, and to determine the specific solution that corresponds to
the physical one. Moreover we analyze the performances of established
approaches like over the whole range of interaction strength, and we
explore alternative approximations. Finally we link certain approximations for
the exact solution to the corresponding manipulations for the differential
equation which produce them. This link is crucial in view of a generalization
of our findings to the real (multidimensional functional) case where only the
differential equation is known.Comment: 17 pages, 7 figure
MIRELLA: a mathematical model explains the effect of microRNA-mediated synthetic genes regulation on intracellular resource allocation
Competition for intracellular resources, also known as gene expression burden, induces coupling between independently co-expressed genes, a detrimental effect on predictability and reliability of gene circuits in mammalian cells. We recently showed that microRNA (miRNA)-mediated target downregulation correlates with the upregulation of a co-expressed gene, and by exploiting miRNAs-based incoherent-feed-forward loops (iFFLs) we stabilise a gene of interest against burden. Considering these findings, we speculate that miRNA-mediated gene downregulation causes cellular resource redistribution. Despite the extensive use of miRNA in synthetic circuits regulation, this indirect effect was never reported before. Here we developed a synthetic genetic system that embeds miRNA regulation, and a mathematical model, MIRELLA, to unravel the miRNA (MI) RolE on intracellular resource aLLocAtion. We report that the link between miRNA-gene downregulation and independent genes upregulation is a result of the concerted action of ribosome redistribution and âqueueing-effectâ on the RNA degradation pathway. Taken together, our results provide for the first time insights into the hidden regulatory interaction of miRNA-based synthetic networks, potentially relevant also in endogenous gene regulation. Our observations allow to define rules for complexity- and context-aware design of genetic circuits, in which transgenes co-expression can be modulated by tuning resource availability via number and location of miRNA target sites
Uptake of gases in bundles of carbon nanotubes
Model calculations are presented which predict whether or not an arbitrary
gas experiences significant absorption within carbon nanotubes and/or bundles
of nanotubes. The potentials used in these calculations assume a conventional
form, based on a sum of two-body interactions with individual carbon atoms; the
latter employ energy and distance parameters which are derived from empirical
combining rules. The results confirm intuitive expectation that small atoms and
molecules are absorbed within both the interstitial channels and the tubes,
while large atoms and molecules are absorbed almost exclusively within the
tubes.Comment: 9 pages, 12 figures, submitted to PRB Newer version (8MAR2K). There
was an error in the old one (23JAN2K). Please download thi
The Detectability of Pair-Production Supernovae at z < 6
Nonrotating, zero metallicity stars with initial masses 140 < M < 260 solar
masses are expected to end their lives as pair-production supernovae (PPSNe),
in which an electron-positron pair-production instability triggers explosive
nuclear burning. Interest in such stars has been rekindled by recent
theoretical studies that suggest primordial molecular clouds preferentially
form stars with these masses. Since metal enrichment is a local process, the
resulting PPSNe could occur over a broad range of redshifts, in pockets of
metal-free gas. Using the implicit hydrodynamics code KEPLER, we have
calculated a set of PPSN light curves that addresses the theoretical
uncertainties and allows us to assess observational strategies for finding
these objects at intermediate redshifts. The peak luminosities of typical PPSNe
are only slightly greater than those of Type Ia, but they remain bright much
longer (~ 1 year) and have hydrogen lines. Ongoing supernova searches may soon
be able to limit the contribution of these very massive stars to < 1% of the
total star formation rate density out to z=2 which already provides useful
constraints for theoretical models. The planned Joint Dark Energy Mission
satellite will be able to extend these limits out to z=6.Comment: 12 pages, 6 figures, ApJ in press; slightly revised version, a few
typos correcte
Some segmental morphological and morphometrical features of the intima and media of the aortic wall in Chinchilla lanigera
Background: The aim of this study is to describe the morphology, morphometry and ultrastructure of segments of the thoracic and abdominal aorta portions in Chinchilla lanigera. Thickness measurements of the tunica intima and media complex of the aorta were taken. Materials and methods: In all observed specimens, the thickness values for the tunica intima and media complex of the cranial thoracic aorta were significantly higher (mean: 702.19 ÎŒm) when compared to the values of other analysed aortic segments (means: 354.18 ÎŒm; 243.55 ÎŒm). Complex statistical methods were used to assess the differences between various aortic segments. Results and Conclusions: The components of the vessel walls show variations in structure and thickness, presumably due to an adaptation to functional demand
Methods, data and tools for facilitating a 3D cultural heritage space
In recent years, the cultural heritage (CH) sector has experienced a rapid evolution due to the introduction of increasingly powerful digital technologies and ICT (Information and Communication Technologies) solutions. As for many other domains, digital data, Artificial Intelligence (AI), and Extended Reality (XR) are opening up extraordinary opportunities for expanding heritage knowledge capabilities while boosting the research on innovative solutions for its valorisation and preservation. Being aware of the fundamental and strategic role of CH in the history and identity of the European countries, the European Commission has assumed a central role in fuelling the policy debate and putting together stakeholders to take a step forward in CH digitization and use, primarily through initiatives, programs, and recommendations. Within this framework, the ongoing European 5DCulture project (https://www.5dculture.eu/) has been funded to enrich the offer of 3D CH digital assets in the common European Data Space for Cultural Heritage by creating high-quality 3D contents and to foster their re-use in several sectors, from tourism to education. Through 8 re-use scenarios around historic buildings and cityscapes, archaeology, and fashion, the project aims to deliver a set of digital tools and increase the capacity of CH institutions to more effectively re-use their 3D digital assets
Progress in hydroxyapatite-starch based sustainable biomaterials for biomedical bone substitution applications
Hydroxyapatite is a calcium phosphate intensively proposed as a bone substitution material because of its resemblance to the constituents of minerals present in natural bone. Since hydroxyapatiteâs properties are mainly adequate for nonload bearing applications, different solutions are being tested for improving these properties and upgrading them near the target values of natural bone. On the other hand, starch (a natural and biodegradable polymer) and its blends with other polymers have been proposed as constituents in hydroxyapatite mixtures due to the adhesive, gelling, and swelling abilities of starch particles, useful in preparing well dispersed suspensions and consolidated ceramic bodies. This article presents the perspectives of incorporating starch and starch blends in hydroxyapatite materials. Based on the role of starch within the materials, the review covers its use as (i) a polymeric matrix in hydroxyapatite composites used as adhesives, bone cements, bone waxes, drug delivery devices or scaffolds and (ii) a sacrificial binder for fabrication of porous hydroxyapatite scaffolds. The suitability of these materials for bone reconstruction has becomes a reachable aim considering the recent advancements in ceramic fabrication and the current possibilities of controlling the processing parameters
- âŠ