472 research outputs found

    The smarty4covid dataset and knowledge base: a framework enabling interpretable analysis of audio signals

    Full text link
    Harnessing the power of Artificial Intelligence (AI) and m-health towards detecting new bio-markers indicative of the onset and progress of respiratory abnormalities/conditions has greatly attracted the scientific and research interest especially during COVID-19 pandemic. The smarty4covid dataset contains audio signals of cough (4,676), regular breathing (4,665), deep breathing (4,695) and voice (4,291) as recorded by means of mobile devices following a crowd-sourcing approach. Other self reported information is also included (e.g. COVID-19 virus tests), thus providing a comprehensive dataset for the development of COVID-19 risk detection models. The smarty4covid dataset is released in the form of a web-ontology language (OWL) knowledge base enabling data consolidation from other relevant datasets, complex queries and reasoning. It has been utilized towards the development of models able to: (i) extract clinically informative respiratory indicators from regular breathing records, and (ii) identify cough, breath and voice segments in crowd-sourced audio recordings. A new framework utilizing the smarty4covid OWL knowledge base towards generating counterfactual explanations in opaque AI-based COVID-19 risk detection models is proposed and validated.Comment: Submitted for publication in Nature Scientific Dat

    Interactions between proteins bound to biomembranes

    Full text link
    We study a physical model for the interaction between general inclusions bound to fluid membranes that possess finite tension, as well as the usual bending rigidity. We are motivated by an interest in proteins bound to cell membranes that apply forces to these membranes, due to either entropic or direct chemical interactions. We find an exact analytic solution for the repulsive interaction between two similar circularly symmetric inclusions. This repulsion extends over length scales of order tens of nanometers, and contrasts with the membrane-mediated contact attraction for similar inclusions on tensionless membranes. For non circularly symmetric inclusions we study the small, algebraically long-ranged, attractive contribution to the force that arises. We discuss the relevance of our results to biological phenomena, such as the budding of caveolae from cell membranes and the striations that are observed on their coats.Comment: 22 pages, 2 figure

    Influence of Lipid Heterogeneity and Phase Behavior on Phospholipase A2 Action at the Single Molecule Level

    Get PDF
    We monitored the action of phospholipase A2 (PLA2) on L- and D-dipalmitoylphosphatidylcholine (DPPC) Langmuir monolayers by mounting a Langmuir-trough on a wide-field fluorescence microscope with single molecule sensitivity. This made it possible to directly visualize the activity and diffusion behavior of single PLA2 molecules in a heterogeneous lipid environment during active hydrolysis. The experiments showed that enzyme molecules adsorbed and interacted almost exclusively with the fluid region of the DPPC monolayers. Domains of gel state L-DPPC were degraded exclusively from the gel-fluid interface where the build-up of negatively charged hydrolysis products, fatty acid salts, led to changes in the mobility of PLA2. The mobility of individual enzymes on the monolayers was characterized by single particle tracking (SPT). Diffusion coefficients of enzymes adsorbed to the fluid interface were between 3 mu m^2/s on the L-DPPC and 4.6 mu m^/s on the D-DPPC monolayers. In regions enriched with hydrolysis products the diffusion dropped to approx. 0.2 mu m^2/s. In addition, slower normal and anomalous diffusion modes were seen at the L-DPPC gel domain boundaries where hydrolysis took place. The average residence times of the enzyme in the fluid regions of the monolayer and on the product domain were between approx. 30 and 220 ms. At the gel domains it was below the experimental time resolution, i.e. enzymes were simply reflected from the gel domains back into solution.Comment: 10 pages, 10 figure

    Interoperable multimedia metadata through similarity-based semantic web service discovery

    Get PDF
    The increasing availability of multimedia (MM) resources, Web services as well as content, on the Web raises the need to automatically discover and process resources out of distributed repositories. However, the heterogeneity of applied metadata schemas and vocabularies – ranging from XML-based schemas such as MPEG-7 to formal knowledge representation approaches – raises interoperability problems. To enable MM metadata interoperability by means of automated similarity-computation, we propose a hybrid representation approach which combines symbolic MM metadata representations with a grounding in so-called Conceptual Spaces (CS). In that, we enable automatic computation of similarities across distinct metadata vocabularies and schemas in terms of spatial distances in shared CS. Moreover, such a vector-based approach is particularly well suited to represent MM metadata, given that a majority of MM parameters is provided in terms of quantified metrics. To prove the feasibility of our approach, we provide a prototypical implementation facilitating similarity-based discovery of publicly available MM services, aiming at federated MM content retrieval out of heterogeneous repositories

    Chronologic distribution of stroke after minimally invasive versus conventional coronary artery bypass

    Get PDF
    AbstractObjectivesWe sought to investigate whether the chronologic distribution of the onset of stroke occurring after coronary artery bypass graft surgery (CABG) without cardiopulmonary bypass (off-pump CABG) is different from the conventional on-pump approach (CABG with cardiopulmonary bypass).BackgroundOff-pump CABG has been associated with a lower stroke rate, compared with conventional on-pump CABG. However, it is unknown whether the chronologic distribution of the onset of stroke is different between the two approaches.MethodsWe evaluated the chronologic distribution of postoperative stroke in patients undergoing CABG from June 1996 to August 2001 (n = 10,573). Preoperative risk factors for stroke were identified using the Northern New England preoperative estimate of stroke risk. Multivariate logistic regression analysis was used to determine the independent predictors of early stroke and to delineate the association between the surgical approach and the chronologic distribution of the onset of stroke.ResultsStroke occurred in 217 patients (2%, n = 10,573). A total of 44 (20%) and 173 (80%) of these patients had stroke after off-pump CABG and on-pump CABG, respectively. The median time for the onset of stroke was two days (range 0 to 11 days) after on-pump CABG versus four days (range 0 to 14 days) after off-pump CABG (p < 0.01). On-pump CABG was associated with a higher risk of early stroke (odds ratio 5.3, 95% confidence interval 2.6 to 10.9; p < 0.01) compared with off-pump CABG.ConclusionsCompared with off-pump CABG, on-pump CABG is associated with an earlier onset of postoperative stroke during the recovery phase, suggesting different mechanisms in the pathogenesis of stroke between the two surgical approaches

    Reverse taxonomy applied to the Brachionus calyciflorus cryptic species complex: Morphometric analysis confirms species delimitations revealed by molecular phylogenetic analysis and allows the (re) description of four species

    Get PDF
    The discovery and exploration of cryptic species have been profoundly expedited thanks to developments in molecular biology and phylogenetics. In this study, we apply a reverse taxonomy approach to the Brachionus calyciflorus species complex, a commonly studied freshwater monogonont rotifer. By combining phylogenetic, morphometric and morphological analyses, we confirm the existence of four cryptic species that have been recently suggested by a molecular study. Based on these results and according to an exhaustive review of the taxonomic literature, we name each of these four species and provide their taxonomic description alongside a diagnostic key

    Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces

    Full text link
    The forces between colloidal particles at a decane-water interface, in the presence of low concentrations of a monovalent salt (NaCl) and of the surfactant sodium dodecylsulfate (SDS) in the aqueous subphase, have been studied using laser tweezers. In the absence of electrolyte and surfactant, particle interactions exhibit a long-range repulsion, yet the variation of the interaction for different particle pairs is found to be considerable. Averaging over several particle pairs was hence found to be necessary to obtain reliable assessment of the effects of salt and surfactant. It has previously been suggested that the repulsion is consistent with electrostatic interactions between a small number of dissociated charges in the oil phase, leading to a decay with distance to the power -4 and an absence of any effect of electrolyte concentration. However, the present work demonstrates that increasing the electrolyte concentration does yield, on average, a reduction of the magnitude of the interaction force with electrolyte concentration. This implies that charges on the water side also contribute significantly to the electrostatic interactions. An increase in the concentration of SDS leads to a similar decrease of the interaction force. Moreover the repulsion at fixed SDS concentrations decreases over longer times. Finally, measurements of three-body interactions provide insight into the anisotropic nature of the interactions. The unique time-dependent and anisotropic interactions between particles at the oil-water interface allow tailoring of the aggregation kinetics and structure of the suspension structure.Comment: Submitted to Langmui
    corecore