77 research outputs found

    Electrical control of spin dynamics in finite one-dimensional systems

    Full text link
    We investigate the possibility of the electrical control of spin transfer in monoatomic chains incorporating spin-impurities. Our theoretical framework is the mixed quantum-classical (Ehrenfest) description of the spin dynamics, in the spirit of the s-d-model, where the itinerant electrons are described by a tight-binding model while localized spins are treated classically. Our main focus is on the dynamical exchange interaction between two well-separated spins. This can be quantified by the transfer of excitations in the form of transverse spin oscillations. We systematically study the effect of an electrostatic gate bias V_g on the interconnecting channel and we map out the long-range dynamical spin transfer as a function of V_g. We identify regions of V_g giving rise to significant amplification of the spin transmission at low frequencies and relate this to the electronic structure of the channel.Comment: 9 pages, 11 figure

    Time-dependent electron transport through a strongly correlated quantum dot: multiple-probe open boundary conditions approach

    Full text link
    We present a time-dependent study of electron transport through a strongly correlated quantum dot. The time-dependent current is obtained with the multiple-probe battery method, while adiabatic lattice density functional theory in the Bethe ansatz local-density approximation to the Hubbard model describes the dot electronic structure. We show that for a certain range of voltages the quantum dot can be driven into a dynamical state characterized by regular current oscillations. This is a manifestation of a recently proposed dynamical picture of Coulomb blockade. Furthermore, we investigate how the various approximations to the electron-electron interaction affect the line-shapes of the Coulomb peaks and the I-V characteristics. We show that the presence of the derivative discontinuity in the approximate exchange-correlation potential leads to significantly different results compared to those obtained at the simpler Hartree level of description. In particular, a negative differential conductance (NDC) in the I-V characteristics is observed at large bias voltages and large Coulomb interaction strengths. We demonstrate that such NDC originates from the combined effect of electron-electron interaction in the dot and the finite bandwidth of the electrodes.Comment: 10 pages, 7 figure

    Ultrafast Non-local Spin Dynamics in Metallic Bi-Layers by Linear and Non-linear Magneto-Optics

    No full text
    We make a step towards the understanding of spin dynamics induced by spin-polarized hot carriers in metals. Exciting the Fe layer of Au/Fe/MgO(001) structures with femtosecond laser pulses, we demonstrate the ultrafast spin transport from Fe into Au using time-resolved MOKE and mSHG for depth-sensitive detection of the transient magnetization

    Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture

    Get PDF
    During interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the "Barr body." Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge intervals, called "superdomains," such that pairs of loci in the same superdomain tend to colocalize. The boundary between the superdomains lies near DXZ4, a macrosatellite repeat whose Xi allele extensively binds the protein CCCTC-binding factor. Third, Xi exhibits extremely large loops, up to 77 megabases long, called "superloops." DXZ4 lies at the anchor of several superloops. Here, we combine 3D mapping, microscopy, and genome editing to study the structure of Xi, focusing on the role of DXZ4 We show that superloops and superdomains are conserved across eutherian mammals. By analyzing ligation events involving three or more loci, we demonstrate that DXZ4 and other superloop anchors tend to colocate simultaneously. Finally, we show that deleting DXZ4 on Xi leads to the disappearance of superdomains and superloops, changes in compartmentalization patterns, and changes in the distribution of chromatin marks. Thus, DXZ4 is essential for proper Xi packaging.National Human Genome Research Institute (U.S.) (Grant HG003067

    Apraxia and motor dysfunction in corticobasal syndrome

    Get PDF
    Background: Corticobasal syndrome (CBS) is characterized by multifaceted motor system dysfunction and cognitive disturbance; distinctive clinical features include limb apraxia and visuospatial dysfunction. Transcranial magnetic stimulation (TMS) has been used to study motor system dysfunction in CBS, but the relationship of TMS parameters to clinical features has not been studied. The present study explored several hypotheses; firstly, that limb apraxia may be partly due to visuospatial impairment in CBS. Secondly, that motor system dysfunction can be demonstrated in CBS, using threshold-tracking TMS, and is linked to limb apraxia. Finally, that atrophy of the primary motor cortex, studied using voxel-based morphometry analysis (VBM), is associated with motor system dysfunction and limb apraxia in CBS. Β  Methods: Imitation of meaningful and meaningless hand gestures was graded to assess limb apraxia, while cognitive performance was assessed using the Addenbrooke's Cognitive Examination - Revised (ACE-R), with particular emphasis placed on the visuospatial subtask. Patients underwent TMS, to assess cortical function, and VBM. Β  Results: In total, 17 patients with CBS (7 male, 10 female; mean age 64.4+/2 6.6 years) were studied and compared to 17 matched control subjects. Of the CBS patients, 23.5% had a relatively inexcitable motor cortex, with evidence of cortical dysfunction in the remaining 76.5% patients. Reduced resting motor threshold, and visuospatial performance, correlated with limb apraxia. Patients with a resting motor threshold <50% performed significantly worse on the visuospatial sub-task of the ACE-R than other CBS patients. Cortical function correlated with atrophy of the primary and pre-motor cortices, and the thalamus, while apraxia correlated with atrophy of the pre-motor and parietal cortices. Β  Conclusions: Cortical dysfunction appears to underlie the core clinical features of CBS, and is associated with atrophy of the primary motor and pre-motor cortices, as well as the thalamus, while apraxia correlates with pre-motor and parietal atrophy

    Basic aspects of the pharmacodynamics of tolperisone, a widely applicable centrally acting muscle relaxant

    Get PDF
    Tolperisone (2-methyl-1-(4-methylphenyl)-3-piperidin-1-ylpropan-1-one hydro-chloride) was introduced in the clinical practice more than forty years ago and is still evaluated as a widely applicable compound in pathologically elevated skeletal muscle tone (spasticity) and related pains of different origin. In the present review, basic pharmacodynamic effects measured on whole animals, analyses of its actions on cell and tissue preparations and molecular mechanism of action on sodium and calcium channels are summarized as recently significantly new data were reported

    A bacterial antirepressor with SH3 domain topology mimics operator DNA in sequestering the repressor DNA recognition helix

    Get PDF
    Direct targeting of critical DNA-binding elements of a repressor by its cognate antirepressor is an effective means to sequester the repressor and remove a transcription initiation block. Structural descriptions for this, though often proposed for bacterial and phage repressor–antirepressor systems, are unavailable. Here, we describe the structural and functional basis of how the Myxococcus xanthus CarS antirepressor recognizes and neutralizes its cognate repressors to turn on a photo-inducible promoter. CarA and CarH repress the carB operon in the dark. CarS, produced in the light, physically interacts with the MerR-type winged-helix DNA-binding domain of these repressors leading to activation of carB. The NMR structure of CarS1, a functional CarS variant, reveals a five-stranded, antiparallel Ξ²-sheet fold resembling SH3 domains, protein–protein interaction modules prevalent in eukaryotes but rare in prokaryotes. NMR studies and analysis of site-directed mutants in vivo and in vitro unveil a solvent-exposed hydrophobic pocket lined by acidic residues in CarS, where the CarA DNA recognition helix docks with high affinity in an atypical ligand-recognition mode for SH3 domains. Our findings uncover an unprecedented use of the SH3 domain-like fold for protein–protein recognition whereby an antirepressor mimics operator DNA in sequestering the repressor DNA recognition helix to activate transcription

    Interaction of the Deubiquitinating Enzyme Ubp2 and the E3 Ligase Rsp5 Is Required for Transporter/Receptor Sorting in the Multivesicular Body Pathway

    Get PDF
    Protein ubiquitination is essential for many events linked to intracellular protein trafficking. We sought to elucidate the possible involvement of the S. cerevisiae deubiquitinating enzyme Ubp2 in transporter and receptor trafficking after we (this study) and others established that affinity purified Ubp2 interacts stably with the E3 ubiquitin ligase Rsp5 and the (ubiquitin associated) UBA domain containing protein Rup1. UBP2 interacts genetically with RSP5, while Rup1 facilitates the tethering of Ubp2 to Rsp5 via a PPPSY motif. Using the uracil permease Fur4 as a model reporter system, we establish a role for Ubp2 in membrane protein turnover. Similar to hypomorphic rsp5 alleles, cells deleted for UBP2 exhibited a temporal stabilization of Fur4 at the plasma membrane, indicative of perturbed protein trafficking. This defect was ubiquitin dependent, as a Fur4 N-terminal ubiquitin fusion construct bypassed the block and restored sorting in the mutant. Moreover, the defect was absent in conditions where recycling was absent, implicating Ubp2 in sorting at the multivesicular body. Taken together, our data suggest a previously overlooked role for Ubp2 as a positive regulator of Rsp5-mediated membrane protein trafficking subsequent to endocytosis

    Functional Interchangeability of Late Domains, Late Domain Cofactors and Ubiquitin in Viral Budding

    Get PDF
    The membrane scission event that separates nascent enveloped virions from host cell membranes often requires the ESCRT pathway, which can be engaged through the action of peptide motifs, termed late (L-) domains, in viral proteins. Viral PTAP and YPDL-like L-domains bind directly to the ESCRT-I and ALIX components of the ESCRT pathway, while PPxY motifs bind Nedd4-like, HECT-domain containing, ubiquitin ligases (e.g. WWP1). It has been unclear precisely how ubiquitin ligase recruitment ultimately leads to particle release. Here, using a lysine-free viral Gag protein derived from the prototypic foamy virus (PFV), where attachment of ubiquitin to Gag can be controlled, we show that several different HECT domains can replace the WWP1 HECT domain in chimeric ubiquitin ligases and drive budding. Moreover, artificial recruitment of isolated HECT domains to Gag is sufficient to stimulate budding. Conversely, the HECT domain becomes dispensable if the other domains of WWP1 are directly fused to an ESCRT-1 protein. In each case where budding is driven by a HECT domain, its catalytic activity is essential, but Gag ubiquitination is dispensable, suggesting that ubiquitin ligation to trans-acting proteins drives budding. Paradoxically, however, we also demonstrate that direct fusion of a ubiquitin moiety to the C-terminus of PFV Gag can also promote budding, suggesting that ubiquitination of Gag can substitute for ubiquitination of trans-acting proteins. Depletion of Tsg101 and ALIX inhibits budding that is dependent on ubiquitin that is fused to Gag, or ligated to trans-acting proteins through the action of a PPxY motif. These studies underscore the flexibility in the ways that the ESCRT pathway can be engaged, and suggest a model in which the identity of the protein to which ubiquitin is attached is not critical for subsequent recruitment of ubiquitin-binding components of the ESCRT pathway and viral budding to proceed

    First-principles quantum transport modeling of spin-transfer and spin-orbit torques in magnetic multilayers

    Full text link
    We review a unified approach for computing: (i) spin-transfer torque in magnetic trilayers like spin-valves and magnetic tunnel junction, where injected charge current flows perpendicularly to interfaces; and (ii) spin-orbit torque in magnetic bilayers of the type ferromagnet/spin-orbit-coupled-material, where injected charge current flows parallel to the interface. Our approach requires to construct the torque operator for a given Hamiltonian of the device and the steady-state nonequilibrium density matrix, where the latter is expressed in terms of the nonequilibrium Green's functions and split into three contributions. Tracing these contributions with the torque operator automatically yields field-like and damping-like components of spin-transfer torque or spin-orbit torque vector, which is particularly advantageous for spin-orbit torque where the direction of these components depends on the unknown-in-advance orientation of the current-driven nonequilibrium spin density in the presence of spin-orbit coupling. We provide illustrative examples by computing spin-transfer torque in a one-dimensional toy model of a magnetic tunnel junction and realistic Co/Cu/Co spin-valve, both of which are described by first-principles Hamiltonians obtained from noncollinear density functional theory calculations; as well as spin-orbit torque in a ferromagnetic layer described by a tight-binding Hamiltonian which includes spin-orbit proximity effect within ferromagnetic monolayers assumed to be generated by the adjacent monolayer transition metal dichalcogenide.Comment: 22 pages, 9 figures, PDFLaTeX; prepared for Springer Handbook of Materials Modeling, Volume 2 Applications: Current and Emerging Material
    • …
    corecore