111 research outputs found

    Prostaglandins induce early growth response 1 transcription factor mediated microsomal prostaglandin E2 synthase up-regulation for colorectal cancer progression

    Get PDF
    Cyclooxygenase2 (COX2) has been associated with cell growth, invasiveness, tumor progression and metastasis of colorectal carcinomas. However, the downstream prostaglandin (PG)-PG receptor pathway involved in these effects is poorly characterized. We studied the PG-pathway in gene expression databases and we found that PTGS2 (prostaglandin G/H synthase and cyclooxygenase) and PTGES (prostaglandin E synthase) are co-expressed in human colorectal tumors. Moreover, we detected that COX2 and microsomal Prostaglandin E synthase 1 (mPGES1) proteins are both up-regulated in colorectal human tumor biopsies. Using colon carcinoma cell cultures we found that COX2 overexpression significantly increased mPGES1 mRNA and protein. This up-regulation was due to an increase in early growth response 1 (EGR1) levels and its transcriptional activity. EGR1 was induced by COX2-generated PGF. A PGF receptor antagonist, or EGR1 silencing, inhibited the mPGES1 induction by COX2 overexpression. Moreover, using immunodeficient mice, we also demonstrated that both COX2- and mPGES1- overexpressing carcinoma cells were more efficient forming tumors. Our results describe for the first time the molecular pathway correlating PTGS2 and PTGES in colon cancer progression. We demonstrated that in this pathway mPGES1 is induced by COX2 overexpression, via autocrine PGs release, likely PGF, through an EGR1-dependent mechanism. This signaling provides a molecular explanation to PTGS2 and PTGES association and contribute to colon cancer advance, pointing out novel potential therapeutic targets in this oncological context.Ministerio de Ciencia e Innovación (SAF2010– 18733, SAF2013–42850-R), Comunidad de Madrid S2010/ BMD-2332, RED RICET RD12/0018/004, PIE13/00041 and an institutional grant from Fundación Ramon Areces to MF. FIS PS12/00094 to MLGBPeer Reviewe

    miR-127 protects proximal tubule cells against ischemia/reperfusion : identification of Kinesin family member 3B as miR-127 target

    Get PDF
    Ischemia/reperfusion (I/R) is at the basis of renal transplantation and acute kidney injury. Molecular mechanisms underlying proximal tubule response to I/R will allow the identification of new therapeutic targets for both clinical settings. microRNAs have emerged as crucial and tight regulators of the cellular response to insults including hypoxia. Here, we have identified several miRNAs involved in the response of the proximal tubule cell to I/R. Microarrays and RT-PCR analysis of proximal tubule cells submitted to I/R mimicking conditions in vitro demonstrated that miR-127 is induced during ischemia and also during reperfusion. miR-127 is also modulated in a rat model of renal I/R. Interference approaches demonstrated that ischemic induction of miR-127 is mediated by Hypoxia Inducible Factor-1alpha (HIF-1α) stabilization. Moreover, miR-127 is involved in cell-matrix and cell-cell adhesion maintenance, since overexpression of miR-127 maintains focal adhesion complex assembly and the integrity of tight junctions. miR-127 also regulates intracellular trafficking since miR-127 interference promotes dextran-FITC uptake. In fact, we have identified the Kinesin Family Member 3B (KIF3B), involved in cell trafficking, as a target of miR-127 in rat proximal tubule cells. In summary, we have described a novel role of miR-127 in cell adhesion and its regulation by HIF-1α. We also identified for the first time KIF3B as a miR-127 target. Both, miR-127 and KIF3B appear as key mediators of proximal epithelial tubule cell response to I/R with potential al application in renal ischemic damage management

    Coffee silverskin extract protects against accelerated aging caused by oxidative agents

    Get PDF
    Nowadays, coffee beans are almost exclusively used for the preparation of the beverage. The sustainability of coffee production can be achieved introducing new applications for the valorization of coffee by-products. Coffee silverskin is the by-product generated during roasting, and because of its powerful antioxidant capacity, coffee silverskin aqueous extract (CSE) may be used for other applications, such as antiaging cosmetics and dermaceutics. This study aims to contribute to the coffee sector’s sustainability through the application of CSE to preserve skin health. Preclinical data regarding the antiaging properties of CSE employing human keratinocytes and Caenorhabditis elegans are collected during the present study. Accelerated aging was induced by tert-butyl hydroperoxide (t-BOOH) in HaCaT cells and by ultraviolet radiation C (UVC) in C. elegans. Results suggest that the tested concentrations of coffee extracts were not cytotoxic, and CSE 1 mg/mL gave resistance to skin cells when oxidative damage was induced by t-BOOH. On the other hand, nematodes treated with CSE (1 mg/mL) showed a significant increased longevity compared to those cultured on a standard diet. In conclusion, our results support the antiaging properties of the CSE and its great potential for improving skin health due to its antioxidant character associated with phenols among other bioactive compounds present in the botanical materialThe authors are grateful for the financial support from the SUSCOFFEE Project (AGL2014-57239-R) and the NATURAGE Project (AGL2010-17779). This work was partially funded by a Santander Small and Medium Enterprises Work Placement Grant in Beacon Biomedicine. Amaia Iriondo is a fellow of the FPI predoctoral program of the Ministry of Economy and Competitiveness (BES-2015-072191). Konstantinos Stamatakis is a recipient of an Asociación Española Contra el Cancer fellowship.We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI)

    TCFL5 deficiency impairs the pachytene to diplotene transition during spermatogenesis in the mouse

    Full text link
    Spermatogenesis is a complex, multistep process during which spermatogonia give rise to spermatozoa. Transcription Factor Like 5 (TCFL5) is a transcription factor that has been described expressed during spermatogenesis. In order to decipher the role of TCFL5 during in vivo spermatogenesis, we generated two mouse models. Ubiquitous removal of TCFL5 generated by breeding TCFL5fl/fl with SOX2-Cre mice resulted in sterile males being unable to produce spermatozoa due to a dramatic alteration of the testis architecture presenting meiosis arrest and lack of spermatids. SYCP3, SYCP1 and H1T expression analysis showed that TCFL5 deficiency causes alterations during pachytene/diplotene transition resulting in a meiotic arrest in a diplotene-like stage. Even more, TCFL5 deficient pachytene showed alterations in the number of MLH1 foci and the condensation of the sexual body. In addition, tamoxifen-inducible TCFL5 knockout mice showed, besides meiosis phenotype, alterations in the spermatids elongation process resulting in aberrant spermatids. Furthermore, TCFL5 deficiency increased spermatogonia maintenance genes (Dalz, Sox2, and Dmrt1) but also increased meiosis genes (Syce1, Stag3, and Morc2a) suggesting that the synaptonemal complex forms well, but cannot separate and meiosis does not proceed. TCFL5 is able to bind to the promoter of Syce1, Stag3, Dmrt1, and Syce1 suggesting a direct control of their expression. In conclusion, TCFL5 plays an essential role in spermatogenesis progression being indispensable for meiosis resolution and spermatids maturatio

    Improving the ORR Performance by Enhancing the Pt Oxidation Resistance

    Get PDF
    Proton exchange membrane fuel cells require oxygen reduction catalysts with high activity and stability. Pt based alloy materials are most widely applied ORR catalyst due to its high intrinsic activity, but usually suffer from rapid deactivation as a result of particle agglomeration, detachment, Ostwald ripening and/or Pt dissolution. Here we investigate the degradation of the PdPt alloys via in situ X-ray absorption fine structure, Δμ analysis, identical location-electron microscopy and DFT calculations. We conclude that the origin of high activity and stability of the PdPt catalyst stems from the oxidation resistance of metallic Pt, forming mainly surface adsorbed O species at high potentials. Two stage degradation process are observed, showing an evolution of dynamic surface dependent ORR performance along with the deactivation process. The careful design of Pt alloy structure leads to controlled surface oxygen behaviours. This opens a new way to increase the lifespan of fuel cells and improve the Pt utilization efficiency

    Infrared Fluorescent Imaging as a Potent Tool for In Vitro, Ex Vivo and In Vivo Models of Visceral Leishmaniasis

    Get PDF
    Visceral leishmaniasis (VL) is hypoendemic in the Mediterranean region, where it is caused by the protozoan Leishmania infantum. An effective vaccine for humans is not yet available and the severe side-effects of the drugs in clinical use, linked to the parenteral administration route of most of them, are significant concerns of the current leishmanicidal medicines. New drugs are desperately needed to treat VL and phenotype-based High Throughput Screenings (HTS) appear to be suitable to achieve this goal in the coming years. We generated two infrared fluorescent L. infantum strains, which stably overexpress the IFP 1.4 and iRFP reporter genes and performed comparative studies of their biophotonic properties at both promastigote and amastigote stages. To improve the fluorescence emission of the selected reporter in intracellular amastigotes, we engineered distinct constructs by introducing regulatory sequences of differentially-expressed genes (A2, AMASTIN and HSP70 II). The final strain that carries the iRFP gene under the control of the L. infantum HSP70 II downstream region (DSR), was employed to perform a phenotypic screening of a collection of small molecules by using ex vivo splenocytes from infrared-infected BALB/c mice. In order to further investigate the usefulness of this infrared strain, we monitored an in vivo infection by imaging BALB/c mice in a time-course study of 20 weeks. The near-infrared fluorescent L. infantum strain represents an important step forward in bioimaging research of VL, providing a robust model of phenotypic screening suitable for HTS of small molecule collections in the mammalian parasite stage. Additionally, HSP70 II+L. infantum strain permitted for the first time to monitor an in vivo infection of VL. This finding accelerates the possibility of testing new drugs in preclinical in vivo studies, thus supporting the urgent and challenging drug discovery program against this parasitic diseaseThis research was supported by Ministerio de Economía y Competitividad (www.mineco.gob.es) grants AGL2010-16078/GAN to RBF and CYTED 214RT0482 to RMR; Instituto de Salud Carlos III (www.isciii.es) grants PI12/00104 to RMR and RICET RD12/0018/0004 to MF; Junta de Castilla y León (www.jcyl.es) grants Gr238 and LE182U13; European Commision (cordis.europa.eu/home_es.html), grant HOMIN - 317057-FP7-PEOPLE-2012-ITN and BIOIMID (http://www.fundacionareces.es) Proyecto de Excelencia Instituto Sanitario “La Princesa” and Fundación Ramón Areces to MF. SK is granted from AECC Foundation (https://www.aecc.es). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the anuscrip

    Cyclooxygenase 2 Effector Genes as Potential Inflammation-Related Biomarkers for Colorectal Cancer Circulating Tumor Cells Detection by Liquid Biopsy

    Get PDF
    Cyclooxygenase 2 (COX2) has been implicated in cancer development and metastasis. We have identified several COX2-regulated inflammation-related genes in human colorectal cancer cells and shown that some of them play important roles in tumor progression. In this work, we have studied the COX2-regulated genes in the mouse colorectal cancer cell line CT26, to find that many are also regulated by COX2 over-expression. On the other hand, we generated a CT26 cell line expressing Gfp and Luciferase, to study tumor growth and metastasis in immunocompetent Balb/c mice. We then collected solid tissue, and blood samples, from healthy and tumor-bearing mice. Using the Parsortix cell separation system and taking advantage of the fact that the tumor cells expressed Gfp, we were able to identify circulating tumor cells (CTCs) in some of the mice. We compared the mRNA expression levels of Ptgs2 and effector genes in the samples obtained from tumor-bearing or healthy mice, namely, tumor or healthy colon, Ficoll purified buffy coat, and Parsortix-isolated cells to find different patterns between healthy, tumor-bearing mice with or without CTCs. Although for genes like Il15 we did not observe any difference between healthy and tumor-bearing mice in Ficoll or Parsortix samples; others, such as Egr1, Zc3h12a, Klf4, or Nfat5, allowed distinguishing for cancer or CTC presence. Gene expression analysis in Ficoll or Parsortix processed samples, after liquid biopsy, may offer valuable diagnostic and prognostic information and thus should be further studied.This research was funded by grants from “Ministerio de Ciencia e Innovación” (SAF2013-42850-R, SAF2016-75988-R, and PID2019-104760RB-I00), “Comunidad de Madrid (S2017/BMD-3671. INFLAMUNE-CM), Fondo de Investigaciones Sanitarias” (BIOIMID) to MF and Institutional grants from “Fundación Ramón Areces” and “Banco de Santander”. KS was the recipient of a Spanish Association Against Cancer Oncology Investigator grant (AECC AIO)
    corecore