220 research outputs found
Rituximab Treatment in Hepatitis C Infection: An In Vitro Model to Study the Impact of B Cell Depletion on Virus Infectivity
Hepatitis C virus (HCV) infected patients with vasculitis are often treated with the B-cell-depleting anti-CD20 antibody rituximab. Treatment reduces the cryoglobulins that cause vasculitis, yet it also leads to a transient increase in liver enzymes and HCV genomic RNA in the periphery. The mechanism underlying the increased viral load is unclear and both direct and indirect roles have been proposed for B cells in HCV infection. We previously reported that HCV can associate with B cells and can trans-infect hepatocytes. We established an in vitro assay to study the effect(s) of rituximab on B cell-associated HCV infectivity. Rituximab-mediated lysis of B cells in vitro increases the level of infectious HCV released from B cells. Our results, using a model where virus does not replicate in B cells, recapitulate observations seen in patients and may explain in part the rapid increase in blood HCV RNA observed after rituximab treatment
InfiniteB2[g] sequences
4 páginas.We exhibit, for any integer g >= 2, an infinite sequence A € B2[g] such that lim supx--infinito
A(x)/ raiz cuadrada x
= 3 / 2 raiz cuadrada 2 . raiz cuadrada g-1. In adition, we obtain
better estimates for small values of g. For example, we exhibit an infinite
sequence A € B2[2] such that lim supx---infinito A(x)/ raiz cuadrada x
= raiz cuadrada3/2 .Partially supported by COLCIENCIAS, Colombia and Universidad del Cauca.Peer reviewe
Efficient Bayesian-based Multi-View Deconvolution
Light sheet fluorescence microscopy is able to image large specimen with high
resolution by imaging the sam- ples from multiple angles. Multi-view
deconvolution can significantly improve the resolution and contrast of the
images, but its application has been limited due to the large size of the
datasets. Here we present a Bayesian- based derivation of multi-view
deconvolution that drastically improves the convergence time and provide a fast
implementation utilizing graphics hardware.Comment: 48 pages, 20 figures, 1 table, under review at Nature Method
Ventricular, atrial, and outflow tract heart progenitors arise from spatially and molecularly distinct regions of the primitive streak
The heart develops from 2 sources of mesoderm progenitors, the first and second heart field (FHF and SHF). Using a single-cell transcriptomic assay combined with genetic lineage tracing and live imaging, we find the FHF and SHF are subdivided into distinct pools of progenitors in gastrulating mouse embryos at earlier stages than previously thought. Each subpopulation has a distinct origin in the primitive streak. The first progenitors to leave the primitive streak contribute to the left ventricle, shortly after right ventricle progenitor emigrate, followed by the outflow tract and atrial progenitors. Moreover, a subset of atrial progenitors are gradually incorporated in posterior locations of the FHF. Although cells allocated to the outflow tract and atrium leave the primitive streak at a similar stage, they arise from different regions. Outflow tract cells originate from distal locations in the primitive streak while atrial progenitors are positioned more proximally. Moreover, single-cell RNA sequencing demonstrates that the primitive streak cells contributing to the ventricles have a distinct molecular signature from those forming the outflow tract and atrium. We conclude that cardiac progenitors are prepatterned within the primitive streak and this prefigures their allocation to distinct anatomical structures of the heart. Together, our data provide a new molecular and spatial map of mammalian cardiac progenitors that will support future studies of heart development, function, and disease
The human liver microenvironment shapes the homing and function of CD4+ T-cell populations.
OBJECTIVE: Tissue-resident memory T cells (TRM) are vital immune sentinels that provide protective immunity. While hepatic CD8+ TRM have been well described, little is known about the location, phenotype and function of CD4+ TRM. DESIGN: We used multiparametric flow cytometry, histological assessment and novel human tissue coculture systems to interrogate the ex vivo phenotype, function and generation of the intrahepatic CD4+ T-cell compartment. We also used leukocytes isolated from human leukocyte antigen (HLA)-disparate liver allografts to assess long-term retention. RESULTS: Hepatic CD4+ T cells were delineated into three distinct populations based on CD69 expression: CD69-, CD69INT and CD69HI. CD69HICD4+ cells were identified as tissue-resident CD4+ T cells on the basis of their exclusion from the circulation, phenotypical profile (CXCR6+CD49a+S1PR1-PD-1+) and long-term persistence within the pool of donor-derived leukcoocytes in HLA-disparate liver allografts. CD69HICD4+ T cells produced robust type 1 polyfunctional cytokine responses on stimulation. Conversely, CD69INTCD4+ T cells represented a more heterogenous population containing cells with a more activated phenotype, a distinct chemokine receptor profile (CX3CR1+CXCR3+CXCR1+) and a bias towards interleukin-4 production. While CD69INTCD4+ T cells could be found in the circulation and lymph nodes, these cells also formed part of the long-term resident pool, persisting in HLA-mismatched allografts. Notably, frequencies of CD69INTCD4+ T cells correlated with necroinflammatory scores in chronic hepatitis B infection. Finally, we demonstrated that interaction with hepatic epithelia was sufficient to generate CD69INTCD4+ T cells, while additional signals from the liver microenvironment were required to generate liver-resident CD69HICD4+ T cells. CONCLUSIONS: High and intermediate CD69 expressions mark human hepatic CD4+ TRM and a novel functionally distinct recirculating population, respectively, both shaped by the liver microenvironment to achieve diverse immunosurveillance
The human liver microenvironment shapes the homing and function of CD4+ T-cell populations
OBJECTIVE: Tissue-resident memory T cells (TRM) are vital immune sentinels that provide protective immunity. While hepatic CD8+ TRM have been well described, little is known about the location, phenotype and function of CD4+ TRM. DESIGN: We used multiparametric flow cytometry, histological assessment and novel human tissue coculture systems to interrogate the ex vivo phenotype, function and generation of the intrahepatic CD4+ T-cell compartment. We also used leukocytes isolated from human leukocyte antigen (HLA)-disparate liver allografts to assess long-term retention. RESULTS: Hepatic CD4+ T cells were delineated into three distinct populations based on CD69 expression: CD69−, CD69INT and CD69HI. CD69HICD4+ cells were identified as tissue-resident CD4+ T cells on the basis of their exclusion from the circulation, phenotypical profile (CXCR6+CD49a+S1PR1−PD-1+) and long-term persistence within the pool of donor-derived leukcoocytes in HLA-disparate liver allografts. CD69HICD4+ T cells produced robust type 1 polyfunctional cytokine responses on stimulation. Conversely, CD69INTCD4+ T cells represented a more heterogenous population containing cells with a more activated phenotype, a distinct chemokine receptor profile (CX3CR1+CXCR3+CXCR1+) and a bias towards interleukin-4 production. While CD69INTCD4+ T cells could be found in the circulation and lymph nodes, these cells also formed part of the long-term resident pool, persisting in HLA-mismatched allografts. Notably, frequencies of CD69INTCD4+ T cells correlated with necroinflammatory scores in chronic hepatitis B infection. Finally, we demonstrated that interaction with hepatic epithelia was sufficient to generate CD69INTCD4+ T cells, while additional signals from the liver microenvironment were required to generate liver-resident CD69HICD4+ T cells. CONCLUSIONS: High and intermediate CD69 expressions mark human hepatic CD4+ TRM and a novel functionally distinct recirculating population, respectively, both shaped by the liver microenvironment to achieve diverse immunosurveillance
The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion
The amphipod crustacean Parhyale hawaiensis is a blossoming model system for studies of developmental mechanisms and more recently regeneration. We have sequenced the genome allowing annotation of all key signaling pathways, transcription factors, and non-coding RNAs that will enhance ongoing functional studies. Parhyale is a member of the Malacostraca clade, which includes crustacean food crop species. We analysed the immunity related genes of Parhyale as an important comparative system for these species, where immunity related aquaculture problems have increased as farming has intensified. We also find that Parhyale and other species within Multicrustacea contain the enzyme sets necessary to perform lignocellulose digestion ('wood eating'), suggesting this ability may predate the diversification of this lineage. Our data provide an essential resource for further development of Parhyale as an experimental model. The first malacostracan genome will underpin ongoing comparative work in food crop species and research investigating lignocellulose as an energy source
Nervous System Regionalization Entails Axial Allocation before Neural Differentiation
Neural induction in vertebrates generates a CNS that extends the rostral-caudal length of the body. The prevailing view is that neural cells are initially induced with anterior (forebrain) identity; caudalizing signals then convert a proportion to posterior fates (spinal cord). To test this model, we used chromatin accessibility to define how cells adopt region-specific neural fates. Together with genetic and biochemical perturbations, this identified a developmental time window in which genome-wide chromatin-remodeling events preconfigure epiblast cells for neural induction. Contrary to the established model, this revealed that cells commit to a regional identity before acquiring neural identity. This "primary regionalization" allocates cells to anterior or posterior regions of the nervous system, explaining how cranial and spinal neurons are generated at appropriate axial positions. These findings prompt a revision to models of neural induction and support the proposed dual evolutionary origin of the vertebrate CNS
Self-medication with antibiotics in rural population in Greece: a cross-sectional multicenter study
<p>Abstract</p> <p>Background</p> <p>Self-medication is an important driver of antimicrobial overuse as well as a worldwide problem. The aim of the present study was to estimate the use of antibiotics, without medical prescription, in a sample of rural population presenting in primary care in southern Greece.</p> <p>Methods</p> <p>The study included data from 1,139 randomly selected adults (545 men/594 women, mean age ± SD: 56.2 ± 19.8 years), who visited the 6 rural Health Centres of southern Greece, between November 2009 and January 2010. The eligible participants were sought out on a one-to-one basis and asked to answer an anonymous questionnaire.</p> <p>Results</p> <p>Use of antibiotics within the past 12 months was reported by 888 participants (77.9%). 508 individuals (44.6%) reported that they had received antibiotics without medical prescription at least one time. The major source of self-medication was the pharmacy without prescription (76.2%). The antibiotics most frequently used for self-medication were amoxicillin (18.3%), amoxicillin/clavulanic acid (15.4%), cefaclor (9.7%), cefuroxim (7.9%), cefprozil (4.7%) and ciprofloxacin (2.3%). Fever (41.2%), common cold (32.0%) and sore throat (20.6%) were the most frequent indications for the use of self-medicated antibiotics.</p> <p>Conclusion</p> <p>In Greece, despite the open and rapid access to primary care services, it appears that a high proportion of rural adult population use antibiotics without medical prescription preferably for fever and common cold.</p
- …