67 research outputs found

    New developments in osteoarthritis and cartilage biology

    Get PDF
    Osteoarthritis (OA) is a degenerative joint disease and the most common form of arthritis. Characterised by articular cartilage loss, subchondral bone thickening and osteophyte formation, the OA joint afflicts much pain and disability. Whilst OA has been associated with many contributing factors, its underpinning molecular mechanisms are, nevertheless, not fully understood. Clinical management of OA is largely palliative and there is an ever growing need for an effective disease modifying treatment. This review discusses some of the recent progress in OA therapies in the different joint tissues affected by OA pathology

    A Computed Microtomography Method for Understanding Epiphyseal Growth Plate Fusion

    Get PDF
    The epiphyseal growth plate is a developmental region responsible for linear bone growth, in which chondrocytes undertake a tightly regulated series of biological processes. Concomitant with the cessation of growth and sexual maturation, the human growth plate undergoes progressive narrowing, and ultimately disappears. Despite the crucial role of this growth plate fusion ‘bridging’ event, the precise mechanisms by which it is governed are complex and yet to be established. Progress is likely hindered by the current methods for growth plate visualisation; these are invasive and largely rely on histological procedures. Here we describe our non-invasive method utilising synchrotron X-ray computed microtomography for the examination of growth plate bridging, which ultimately leads to its closure coincident with termination of further longitudinal bone growth. We then apply this method to a dataset obtained from a benchtop microcomputed tomography scanner to highlight its potential for wide usage. Furthermore, we conduct finite element modelling at the micron-scale to reveal the effects of growth plate bridging on local tissue mechanics. Employment of these 3D analyses of growth plate bone bridging is likely to advance our understanding of the physiological mechanisms that control growth plate fusion

    Proton Pump Inhibitors Inhibit PHOSPHO1 Activity and Matrix Mineralisation In Vitro

    Get PDF
    Proton pump inhibitors (PPIs) have been associated with an increased risk of fragility fractures in pharmaco-epidemiological studies. The mechanism is unclear, but it has been speculated that by neutralising gastric acid, they may reduce intestinal calcium absorption, causing secondary hyperparathyroidism and bone loss. Here we investigated that hypothesis that the skeletal effects of PPI might be mediated by inhibitory effects on the bone-specific phosphatase PHOSPHO1. We found that the all PPIs tested inhibited the activity of PHOSPHO1 with IC50 ranging between 0.73 ”M for esomeprazole to 19.27 ”M for pantoprazole. In contrast, these PPIs did not inhibit TNAP activity. We also found that mineralisation of bone matrix in primary osteoblast cultures was inhibited by several PPIs in a concentration dependent manner. In contrast, the histamine-2 receptor antagonists (H2RA) nizatidine, famotidine, cimetidine and ranitidine had no inhibitory effects on PHOSPHO1 activity. Our experiments show for the first time that PPIs inhibit PHOSPHO1 activity and matrix mineralisation in vitro revealing a potential mechanism by which these widely used drugs are associated with the risk of fractures

    Culture of Murine Embryonic Metatarsals: A Physiological Model of Endochondral Ossification

    Get PDF
    The fundamental process of endochondral ossification is under tight regulation in the healthy individual so as to prevent disturbed development and/or longitudinal bone growth. As such, it is imperative that we further our understanding of the underpinning molecular mechanisms involved in such disorders so as to provide advances towards human and animal patient benefit. The mouse metatarsal organ explant culture is a highly physiological ex vivo model for studying endochondral ossification and bone growth as the growth rate of the bones in culture mimic that observed in vivo. Uniquely, the metatarsal organ culture allows the examination of chondrocytes in different phases of chondrogenesis and maintains cell-cell and cell-matrix interactions, therefore providing conditions closer to the in vivo situation than cells in monolayer or 3D culture. This protocol describes in detail the intricate dissection of embryonic metatarsals from the hind limb of E15 murine embryos and the subsequent analyses that can be performed in order to examine endochondral ossification and longitudinal bone growth

    Life course longitudinal growth and risk of knee osteoarthritis at age 53 years: evidence from the 1946 British birth cohort study

    Get PDF
    ObjectiveTo examine the relationship between height gain across childhood and adolescence with knee osteoarthritis in the MRC National Survey of Health and Development (NSHD).Materials and methodsData are from 3035 male and female participants of the NSHD. Height was measured at ages 2, 4, 6, 7, 11 and 15 years, and self-reported at ages 20 years. Associations between (i) height at each age (ii) height gain during specific life periods (iii) Super-Imposition by Translation And Rotation (SITAR) growth curve variables of height size, tempo and velocity, and knee osteoarthritis at 53 years were tested.ResultsIn sex-adjusted models, estimated associations between taller height and decreased odds of knee osteoarthritis at age 53 years were small at all ages - the largest associations were an OR of knee osteoarthritis of 0.9 per 5cm increase in height at age 4, (95% CI 0.7-1.1) and an OR of 0.9 per 5cm increase in height, (95% CI 0.8-1.0) at age 6. No associations were found between height gain during specific life periods or the SITAR growth curve variables and odds of knee osteoarthritis.ConclusionsThere was limited evidence to suggest that taller height in childhood is associated with decreased odds of knee osteoarthritis at age 53 years in this cohort. This work enhances our understanding of osteoarthritis predisposition and the contribution of life course height to this

    A distinctive patchy osteomalacia characterises Phospho1-deficient mice

    Get PDF
    The phosphatase PHOSPHO1 is involved in the initiation of biomineralisation. Bones in Phospho1 KO mice show histological osteomalacia with frequent bowing of long bones and spontaneous fractures: they contain less mineral, with smaller mineral crystals. However, the consequences of Phospho1 ablation on the microscale structure of bone are not yet fully elucidated. Tibias and femurs obtained from wild-type and Phospho1 null (KO) mice (25-32 week-old) were embedded in PMMA, cut and polished to produce near longitudinal sections. Block surfaces were studied using 20kV backscattered-electron (BSE) imaging, and again after iodine staining to reveal non-mineralised matrix and cellular components. For 3D characterisation, we used x-ray microtomography. Bones opened with carbide milling tools to expose endosteal surfaces were macerated using an alkaline bacterial pronase enzyme detergent, 5% hydrogen peroxide and 7% sodium hypochlorite solutions to produce 3D surfaces for study with 3D BSE scanning electron microscopy. Extensive regions of both compact cortical and trabecular bone matrix in Phospho1 KO mice contained no significant mineral and/or showed arrested mineralisation fronts, characterised by a failure in the fusion of the calcospherite-like, separately mineralising, individual micro-volumes within bone. Osteoclastic resorption of the uncalcified matrix in Phospho1 KO mice was attenuated compared with surrounding normally-mineralised bone. The extent and position of this aberrant biomineralisation varied considerably between animals, contralateral limbs and anatomical sites. The most frequent manifestation lay, however, in the nearly complete failure of mineralisation in the bone surrounding the numerous transverse blood vessel canals in the cortices

    Azathioprine Has a Deleterious Effect on the Bone Health of Mice with DSS-Induced Inflammatory Bowel Disease

    Get PDF
    Patients with inflammatory bowel disease (IBD) often present poor bone health and are 40% more at risk of bone fracture. Studies have implicated autophagy in IBD pathology and drugs used to treat IBD stimulate autophagy in varying degrees, however, their effect on the skeleton is currently unknown. Here, we have utilised the dextran sulphate sodium (DSS) model of colitis in mice to examine the effects of the thiopurine drug azathioprine on the skeleton. 10-week-old male mice (n=6/group) received 3.0% DSS in their drinking water for 4 days, followed by a 14-day recovery period. Mice were treated with 10mg/kg/day azathioprine or vehicle control. Histopathological analysis of the colon from DSS mice revealed significant increases in scores for inflammation severity, extent and crypt damage (

    PALMD regulates aortic valve calcification via altered glycolysis and NF-ÎșB-mediated inflammation

    Get PDF
    Recent genome-wide association and transcriptome-wide association studies have identified an association between the PALMD locus, encoding palmdelphin, a protein involved in myoblast differentiation, and calcific aortic valve disease (CAVD). Nevertheless, the function and underlying mechanisms of PALMD in CAVD remain unclear. We herein investigated whether and how PALMD affects the pathogenesis of CAVD using clinical samples from CAVD patients and a human valve interstitial cell (hVIC) in vitro calcification model. We showed that PALMD was upregulated in calcified regions of human aortic valves and calcified hVICs. Furthermore, silencing of PALMD reduced hVIC in vitro calcification, osteogenic differentiation, and apoptosis, whereas overexpression of PALMD had the opposite effect. RNA-Seq of PALMD-depleted hVICs revealed that silencing of PALMD reduced glycolysis and nuclear factor-ÎșB (NF-ÎșB)–mediated inflammation in hVICs and attenuated tumor necrosis factor α–induced monocyte adhesion to hVICs. Having established the role of PALMD in hVIC glycolysis, we examined whether glycolysis itself could regulate hVIC osteogenic differentiation and inflammation. Intriguingly, the inhibition of PFKFB3-mediated glycolysis significantly attenuated osteogenic differentiation and inflammation of hVICs. However, silencing of PFKFB3 inhibited PALMD-induced hVIC inflammation, but not osteogenic differentiation. Finally, we showed that the overexpression of PALMD enhanced hVIC osteogenic differentiation and inflammation, as opposed to glycolysis, through the activation of NF-ÎșB. The present study demonstrates that the genome-wide association– and transcriptome-wide association–identified CAVD risk gene PALMD may promote CAVD development through regulation of glycolysis and NF-ÎșB–mediated inflammation. We propose that targeting PALMD-mediated glycolysis may represent a novel therapeutic strategy for treating CAVD

    Increased linear bone growth by GH in the absence of SOCS2 is independent of IGF-1: SOCS2 REGULATION OF GH INDUCED GROWTH

    Get PDF
    Growth hormone (GH) signaling is essential for postnatal linear bone growth, but the relative importance of GHs actions on the liver and/or growth plate cartilage remains unclear. The importance of liver derived insulin like-growth factor-1 (IGF-1) for endochondral growth has recently been challenged. Here, we investigate linear growth in Suppressor of Cytokine Signaling-2 (SOCS2) knockout mice, which have enhanced growth despite normal systemic GH/IGF-1 levels. Wild-type embryonic ex vivo metatarsals failed to exhibit increased linear growth in response to GH, but displayed increased Socs2 transcript levels (P
    • 

    corecore