1,121 research outputs found
Product assurance technology for custom LSI/VLSI electronics
The technology for obtaining custom integrated circuits from CMOS-bulk silicon foundries using a universal set of layout rules is presented. The technical efforts were guided by the requirement to develop a 3 micron CMOS test chip for the Combined Release and Radiation Effects Satellite (CRRES). This chip contains both analog and digital circuits. The development employed all the elements required to obtain custom circuits from silicon foundries, including circuit design, foundry interfacing, circuit test, and circuit qualification
Impact of Radiotherapy, Chemotherapy and Surgery in Multimodal Treatment of Locally Advanced Esophageal Cancer
Objectives: It was the aim of this study to assess our institutional experience with definitive chemoradiation (CRT) versus induction chemotherapy followed by CRT with or without surgery (C-CRT/S) in esophageal cancer. Methods: We retrospectively analyzed 129 institutional patients with locally advanced esophageal cancer who had been treated by either CRT in analogy to the RTOG 8501 trial (n = 78) or C-CRT/S (n = 51). Results: The median, 2-and 5-year overall survival (OS) of the entire collective was 17.6 months, 42 and 24%, respectively, without a significant difference between the CRT and C-CRT/S groups. In C-CRT/S patients, surgery statistically improved the locoregional control (LRC) rates (2-year LRC 73.6 vs. 21.2%; p = 0.003); however, this was translated only into a trend towards improved OS (p = 0.084). The impact of escalated radiation doses (>= 60.0 vs. <60.0 Gy) on LRC was detectable only in T1-3 N0-1 M0 patients of the CRT group (2-year LRC 77.8 vs. 42.3%; p = 0.036). Conclusion: Definitive CRT and a trimodality approach including surgery (C-CRT/S) had a comparable outcome in this unselected patient collective. Surgery and higher radiation doses improve LRC rates in subgroups of patients, respectively, but without effect on OS. Copyright (C) 2012 S. Karger AG, Base
Laser induced breakdown of the magnetic field reversal symmetry in the propagation of unpolarized light
We show how a medium, under the influece of a coherent control field which is
resonant or close to resonance to an appropriate atomic transition, can lead to
very strong asymmetries in the propagation of unpolarized light when the
direction of the magnetic field is reversed. We show how EIT can be used to
mimic effects occuring in natural systems and that EIT can produce very large
asymmetries as we use electric dipole allowed transitions. Using density matrix
calculations we present results for the breakdown of the magnetic field
reversal symmetry for two different atomic configurations.Comment: RevTex, 6 pages, 10 figures, Two Column format, submitted to Phys.
Rev.
Limits on Dark Matter Effective Field Theory Parameters with CRESST-II
CRESST is a direct dark matter search experiment, aiming for an observation
of nuclear recoils induced by the interaction of dark matter particles with
cryogenic scintillating calcium tungstate crystals. Instead of confining
ourselves to standard spin-independent and spin-dependent searches, we
re-analyze data from CRESST-II using a more general effective field theory
(EFT) framework. On many of the EFT coupling constants, improved exclusion
limits in the low-mass region (< 3-4 GeV) are presented.Comment: 7 pages, 9 figure
Resonant nonlinear magneto-optical effects in atoms
In this article, we review the history, current status, physical mechanisms,
experimental methods, and applications of nonlinear magneto-optical effects in
atomic vapors. We begin by describing the pioneering work of Macaluso and
Corbino over a century ago on linear magneto-optical effects (in which the
properties of the medium do not depend on the light power) in the vicinity of
atomic resonances, and contrast these effects with various nonlinear
magneto-optical phenomena that have been studied both theoretically and
experimentally since the late 1960s. In recent years, the field of nonlinear
magneto-optics has experienced a revival of interest that has led to a number
of developments, including the observation of ultra-narrow (1-Hz)
magneto-optical resonances, applications in sensitive magnetometry, nonlinear
magneto-optical tomography, and the possibility of a search for parity- and
time-reversal-invariance violation in atoms.Comment: 51 pages, 23 figures, to appear in Rev. Mod. Phys. in Oct. 2002,
Figure added, typos corrected, text edited for clarit
Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground
Models for light dark matter particles with masses below 1 GeV/c are a
natural and well-motivated alternative to so-far unobserved weakly interacting
massive particles. Gram-scale cryogenic calorimeters provide the required
detector performance to detect these particles and extend the direct dark
matter search program of CRESST. A prototype 0.5 g sapphire detector developed
for the -cleus experiment has achieved an energy threshold of
eV, which is one order of magnitude lower than previous
results and independent of the type of particle interaction. The result
presented here is obtained in a setup above ground without significant
shielding against ambient and cosmogenic radiation. Although operated in a
high-background environment, the detector probes a new range of light-mass dark
matter particles previously not accessible by direct searches. We report the
first limit on the spin-independent dark matter particle-nucleon cross section
for masses between 140 MeV/c and 500 MeV/c.Comment: 6 pages, 6 figures, v3: ancillary files added, v4: high energy
spectrum (0.6-12keV) added to ancillary file
Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data
The IceCube Collaboration has previously discovered a high-energy
astrophysical neutrino flux using neutrino events with interaction vertices
contained within the instrumented volume of the IceCube detector. We present a
complementary measurement using charged current muon neutrino events where the
interaction vertex can be outside this volume. As a consequence of the large
muon range the effective area is significantly larger but the field of view is
restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have
been analyzed using a likelihood approach based on the reconstructed muon
energy and zenith angle. At the highest neutrino energies between 191 TeV and
8.3 PeV a significant astrophysical contribution is observed, excluding a
purely atmospheric origin of these events at significance. The
data are well described by an isotropic, unbroken power law flux with a
normalization at 100 TeV neutrino energy of
and a hard spectral index of . The observed spectrum is
harder in comparison to previous IceCube analyses with lower energy thresholds
which may indicate a break in the astrophysical neutrino spectrum of unknown
origin. The highest energy event observed has a reconstructed muon energy of
which implies a probability of less than 0.005% for
this event to be of atmospheric origin. Analyzing the arrival directions of all
events with reconstructed muon energies above 200 TeV no correlation with known
-ray sources was found. Using the high statistics of atmospheric
neutrinos we report the currently best constraints on a prompt atmospheric muon
neutrino flux originating from charmed meson decays which is below in
units of the flux normalization of the model in Enberg et al. (2008).Comment: 20 pages, 21 figure
The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux
The recent discovery of a diffuse cosmic neutrino flux extending up to PeV
energies raises the question of which astrophysical sources generate this
signal. One class of extragalactic sources which may produce such high-energy
neutrinos are blazars. We present a likelihood analysis searching for
cumulative neutrino emission from blazars in the 2nd Fermi-LAT AGN catalogue
(2LAC) using an IceCube neutrino dataset 2009-12 which was optimised for the
detection of individual sources. In contrast to previous searches with IceCube,
the populations investigated contain up to hundreds of sources, the largest one
being the entire blazar sample in the 2LAC catalogue. No significant excess is
observed and upper limits for the cumulative flux from these populations are
obtained. These constrain the maximum contribution of the 2LAC blazars to the
observed astrophysical neutrino flux to be or less between around 10
TeV and 2 PeV, assuming equipartition of flavours at Earth and a single
power-law spectrum with a spectral index of . We can still exclude that
the 2LAC blazars (and sub-populations) emit more than of the observed
neutrinos up to a spectral index as hard as in the same energy range.
Our result takes into account that the neutrino source count distribution is
unknown, and it does not assume strict proportionality of the neutrino flux to
the measured 2LAC -ray signal for each source. Additionally, we
constrain recent models for neutrino emission by blazars.Comment: 18 pages, 22 figure
Lowering IceCube’s energy threshold for point source searches in the southern sky
Observation of a point source of astrophysical neutrinos would be a "smoking gun" signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current nu(mu) interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (similar to 100 TeV) starting event in the sample found that this event alone represents a 2.8 sigma deviation from the hypothesis that the data consists only of atmospheric background
- …
