793 research outputs found
Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 1: In-snow bromine activation and its impact on ozone
To provide a theoretical framework towards a better understanding of ozone
depletion events (ODEs) and atmospheric mercury depletion events (AMDEs) in
the polar boundary layer, we have developed a one-dimensional model that
simulates multiphase chemistry and transport of trace constituents from
porous snowpack and through the atmospheric boundary layer (ABL) as a unified
system. This paper constitutes Part 1 of the study, describing a general
configuration of the model and the results of simulations related to reactive
bromine release from the snowpack and ODEs during the Arctic spring. A common
set of aqueous-phase reactions describes chemistry both within the
liquid-like layer (LLL) on the grain surface of the snowpack and within
deliquesced "haze" aerosols mainly composed of sulfate in the atmosphere.
Gas-phase reactions are also represented by the same mechanism in the
atmosphere and in the snowpack interstitial air (SIA). Consequently, the
model attains the capacity of simulating interactions between chemistry and
mass transfer that become particularly intricate near the interface between
the atmosphere and the snowpack. In the SIA, reactive uptake on LLL-coated
snow grains and vertical mass transfer act simultaneously on gaseous HOBr, a
fraction of which enters from the atmosphere while another fraction is formed
via gas-phase chemistry in the SIA itself. A "bromine explosion", by which
HOBr formed in the ambient air is deposited and then converted
heterogeneously to Br<sub>2</sub>, is found to be a dominant process of reactive
bromine formation in the top 1 mm layer of the snowpack. Deeper in the
snowpack, HOBr formed within the SIA leads to an in-snow bromine explosion,
but a significant fraction of Br<sub>2</sub> is also produced via aqueous
radical chemistry in the LLL on the surface of the snow grains. These top-
and deeper-layer productions of Br<sub>2</sub> both contribute to the release of
Br<sub>2</sub> to the atmosphere, but the deeper-layer production is found to be
more important for the net outflux of reactive bromine. Although ozone is
removed via bromine chemistry, it is also among the key species that control
both the conventional and in-snow bromine explosions. On the other hand,
aqueous-phase radical chemistry initiated by photolytic OH formation in the
LLL is also a significant contributor to the in-snow source of Br<sub>2</sub>
and can operate without ozone, whereas the delivery of Br<sub>2</sub> to the
atmosphere becomes much smaller after ozone is depleted. Catalytic ozone loss
via bromine radical chemistry occurs more rapidly in the SIA than in the
ambient air, giving rise to apparent dry deposition velocities for ozone from
the air to the snow on the order of 10<sup>−3</sup> cm s<sup>−1</sup> during
daytime. Overall, however, the depletion of ozone in the system is caused
predominantly by ozone loss in the ambient air. Increasing depth of the
turbulent ABL under windy conditions will delay the buildup of reactive
bromine and the resultant loss of ozone, while leading to the higher column
amount of BrO in the atmosphere. During the Arctic spring, if moderately
saline and acidic snowpack is as prevalent as assumed in our model runs on
sea ice, the shallow, stable ABL under calm weather conditions may undergo
persistent ODEs without substantial contributions from blowing/drifting snow
and wind-pumping mechanisms, whereas the column densities of BrO in the ABL
will likely remain too low in the course of such events to be detected
unambiguously by satellite nadir measurements
Leaf chlorophyll content as a proxy for leaf photosynthetic capacity.
Improving the accuracy of estimates of forest carbon exchange is a central priority for understanding ecosystem response to increased atmospheric CO2 levels and improving carbon cycle modelling. However, the spatially continuous parameterization of photosynthetic capacity (Vcmax) at global scales and appropriate temporal intervals within terrestrial biosphere models (TBMs) remains unresolved. This research investigates the use of biochemical parameters for modelling leaf photosynthetic capacity within a deciduous forest. Particular attention is given to the impacts of seasonality on both leaf biophysical variables and physiological processes, and their interdependent relationships. Four deciduous tree species were sampled across three growing seasons (2013-2015), approximately every 10 days for leaf chlorophyll content (ChlLeaf ) and canopy structure. Leaf nitrogen (NArea ) was also measured during 2014. Leaf photosynthesis was measured during 2014-2015 using a Li-6400 gas-exchange system, with A-Ci curves to model Vcmax. Results showed that seasonality and variations between species resulted in weak relationships between Vcmax normalized to 25°C (Vcmax25) and NArea (R2  = 0.62, P < 0.001), whereas ChlLeaf demonstrated a much stronger correlation with Vcmax25 (R2  = 0.78, P < 0.001). The relationship between ChlLeaf and NArea was also weak (R2  = 0.47, P < 0.001), possibly due to the dynamic partitioning of nitrogen, between and within photosynthetic and nonphotosynthetic fractions. The spatial and temporal variability of Vcmax25 was mapped using Landsat TM/ETM satellite data across the forest site, using physical models to derive ChlLeaf . TBMs largely treat photosynthetic parameters as either fixed constants or varying according to leaf nitrogen content. This research challenges assumptions that simple NArea -Vcmax25 relationships can reliably be used to constrain photosynthetic capacity in TBMs, even within the same plant functional type. It is suggested that ChlLeaf provides a more accurate, direct proxy for Vcmax25 and is also more easily retrievable from satellite data. These results have important implications for carbon modelling within deciduous ecosystems
Incorporating leaf chlorophyll content into a two-leaf terrestrial biosphere model for estimating carbon and water fluxes at a forest site
Chlorophyll is the main light-harvesting pigment in leaves, facilitating photosynthesis and indicating the supply of nitrogen for photosynthetic enzymes. In this study, we explore the feasibility of integrating leaf chlorophyll content (Chlleaf) into a Terrestrial Biosphere Model (TBM), as a proxy for the leaf maximum carboxylation rate at 25°C (Vmax25), for the purpose of improving carbon and water flux estimation. Measurements of Chlleaf and Vmax25 were made in a deciduous forest stand at the Borden Forest Research Station in southern Ontario, Canada, where carbon and water fluxes were measured by the eddy covariance method. The use of Chlleaf-based Vmax25 in the TBM significantly reduces the bias of estimated gross primary productivity (GPP) and evapotranspiration (ET) and improves the temporal correlations between the simulated and the measured fluxes, relative to the commonly employed cases of using specified constant Vmax25, leaf area index (LAI)-based Vmax25 or specific leaf area (SLA)-based Vmax25. The biggest improvements are found in spring and fall, when the mean absolute errors (MAEs) between modelled and measured GPP are reduced from between 2.2–3.2 to 1.8gCm−2d−1 in spring and from between 2.1–2.8 to 1.8gCm−2 d−1 in fall. The MAEs in ET estimates are reduced from 0.7–0.8mmd−1 to 0.6mmd−1 in spring, but no significant improvement is noted in autumn. A two-leaf upscaling scheme is used to account for the uneven distribution of incoming solar radiation inside canopies and the associated physiological differences between leaves. We found that modelled Vmax25 in sunlit leaves is 34% larger than in the shaded leaves of the same Chlleaf, which echoes previous physiological studies on light acclimation of plants. This study represents the first case of the incorporation of chlorophyll as a proxy for Vmax25 in a two-leaf TBM at a forest stand and demonstrates the efficacy of using chlorophyll to constrain Vmax25 and reduce the uncertainties in GPP and ET simulations
Recommended from our members
Enhanced confinement discharges in DIII-D with neon and argon induced radiation
Enhanced energy confinement in discharges with impurity induced radiating power fractions, P{sub rad}/P{sub in}, from 50--100% have been observed in the DIII-D tokamak, with neon and argon gas puffing. These radiating mantle enhanced confinement discharges have been obtained in the DIII-D tokamak under a variety of conditions: diverted and limited configurations with both an H-mode and L-mode edge. Confinement enhancements as high as the ELM free H-mode scaling relation have been obtained with impurity gas puffing, although operation at the highest densities is transient. Similarities and differences between these DIII-D discharges and RI-mode discharges obtained in the TEXTOR tokamak are discussed
Depletion of gaseous polycyclic aromatic hydrocarbons by a forest canopy
Rapid uptake of gaseous polycyclic aromatic hydrocarbons (PAHs) by a forest canopy was observed at Borden in Southern Ontario, Canada during bud break in early spring 2003. High volume air samples were taken on 12 individual days at three different heights (44.4, 29.1, and 16.7 m) on a scaffolding tower and on the forest floor below the canopy (1.5 m). Concentrations of PAHs were positively correlated to ambient temperature, resulting from relatively warm and polluted air masses passing over the Eastern United States and Toronto prior to arriving at the sampling site. An analysis of vertical profiles and gas/particle partitioning of the PAHs showed that gaseous PAHs established a concentration gradient with height, whereas levels of particulate PAHs were relatively uniform, implying that only the uptake of gaseous PAHs by the forest canopy was sufficiently rapid to be observed. Specifically, the gaseous concentrations of intermediate PAHs, such as phenanthrene, anthracene, and pyrene, during budburst and leaf emergence were reduced within and above the canopy. When a gradient was observed, the percentage of PAHs on particles increased at the elevations experiencing a decrease in gas phase concentrations. The uptake of intermediate PAHs by the canopy also led to significant differences in gaseous PAH composition with height. These results are the most direct evidence yet of the filter effect of forest canopies for gaseous PAHs in early spring. PAH deposition fluxes and dry gaseous deposition velocities to the forest canopy were estimated from the concentration gradients
Recommended from our members
Behavior of electron and ion transport in discharges with an internal transport barrier in the DIII-D tokamak
The authors report results of experiments to further determine the underlying physics behind the formation and development of internal transport barriers (ITB) in the DIII-D tokamak. The initial ITB formation occurs when the neutral beam heating power exceeds a threshold value during the early stages of the current ramp in low-density discharges. This region of reduced transport, made accessible by suppression of long-wavelength turbulence by sheared flows, is most evident in the ion temperature and impurity rotation profiles. In some cases, reduced transport is also observed in the electron temperature and density profiles. If the power is near the threshold, the barrier remains stationary and enclosed only a small fraction of the plasma volume. If, however, the power is increased, the transport barrier expands to encompass a larger fraction of the plasma volume. The dynamic behavior of the transport barrier during the growth phase exhibits rapid transport events that are associated with both broadening of the profiles and reductions in turbulence and associated transport. In some, but not all, cases, these events are correlated with the safety factor q passing through integer values. The final state following this evolution is a plasma exhibiting ion thermal transport at or below neoclassical levels. Typically, the electron thermal transport remains anomalously high. Recent experimental results are reported in which rf electron heating was applied to plasmas with an ion ITB, thereby increasing both the electron and ion transport. Although the results are partially in agreement with the usual {rvec E} x {rvec B} shear suppression hypothesis, the results still leave questions that must be addressed in future experiments
Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation
As a class of brown carbon, organonitrogen compounds originating from the
heterogeneous uptake of NH3 by secondary organic aerosol (SOA) have
received significant attention recently. In the current work, particulate
organonitrogen formation during the ozonolysis of α-pinene and the OH
oxidation of m-xylene in the presence of ammonia (34–125 ppb) was studied
in a smog chamber equipped with a high resolution time-of-flight aerosol mass
spectrometer and a quantum cascade laser instrument. A large diversity of
nitrogen-containing organic (NOC) fragments was observed which were
consistent with the reactions between ammonia and carbonyl-containing SOA.
Ammonia uptake coefficients onto SOA which led to organonitrogen compounds
were reported for the first time, and were in the range of ∼
10-3–10−2, decreasing significantly to -5 after
6 h of reaction. At the end of experiments (~ 6 h) the NOC mass
contributed 8.9 ± 1.7 and 31.5 ± 4.4 wt % to the total
α-pinene- and m-xylene-derived SOA, respectively, and
4–15 wt % of the total nitrogen in the system. Uptake coefficients were
also found to be positively correlated with particle acidity and negatively
correlated with NH3 concentration, indicating that heterogeneous
reactions were responsible for the observed NOC mass, possibly limited by
liquid phase diffusion. Under these conditions, the data also indicate that
the formation of NOC can compete kinetically with inorganic acid
neutralization. The formation of NOC in this study suggests that a
significant portion of the ambient particle associated N may be derived from
NH3 heterogeneous reactions with SOA. NOC from such a mechanism may be
an important and unaccounted for source of PM associated nitrogen. This
mechanism may also contribute to the medium or long-range transport and
wet/dry deposition of atmospheric nitrogen
Recommended from our members
Impurity feedback control for enhanced divertor and edge radiation in DIII-D discharges
Long pulse and steady state fusion ignition devices will require a significant radiated power fraction to minimize heat flux to, and sputtering of, the first wall. While impurity gases have been proposed to enhance radiation, precise control of impurity gas injection is essential to achieve an adequate radiative power fraction while maintaining good energy confinement and low central impurity concentration. We report here the first experiments in the DIII-D tokamak using feedback control of the rate of impurity gas injection. These experiments were carried out with active divertor pumping using the in-situ DIII-D cryopump. The radiated power fraction was controlled by sensing either UN edge line radiation (Ne{sup +7}) or mantle radiation from selected bolometer channels and using the DIII-D digital plasma control system to calculate radiated power real-time and generate an error signal to control an impurity gas injector valve
Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall
Surprising asymmetry in the local electromechanical response across a single
antiparallel ferroelectric domain wall is reported. Piezoelectric force
microscopy is used to investigate both the in-plane and out-of- plane
electromechanical signals around domain walls in congruent and
near-stoichiometric lithium niobate. The observed asymmetry is shown to have a
strong correlation to crystal stoichiometry, suggesting defect-domain wall
interactions. A defect-dipole model is proposed. Finite element method is used
to simulate the electromechanical processes at the wall and reconstruct the
images. For the near-stoichiometric composition, good agreement is found in
both form and magnitude. Some discrepancy remains between the experimental and
modeling widths of the imaged effects across a wall. This is analyzed from the
perspective of possible electrostatic contributions to the imaging process, as
well as local changes in the material properties in the vicinity of the wall
- …