180 research outputs found

    Cortisol and testosterone accumulation in a low pH recirculating aquaculture system for rainbow trout (Oncorhynchus mykiss)

    Get PDF
    Steroids accumulate in recirculating aquaculture system (RAS), although explanatory factors for such accumulation are still poorly explored. This study investigated the effect of water exchange rate and pH in six replicated RAS on the concentration of the stress hormone cortisol in rainbow trout blood plasma and in the holding water and of the sex steroids testosterone, 11-ketotestosterone (11-KT) and 17,20-dihydroxypregn-4-en-3-one (17,20-P) over a 70-day experimental period. Three combinations of water exchange rate and pH were used each treatment, with two replications: (i) high water exchange rate (+/- 1700Lkg(-1) feed) and neutral pH (+/- 7.3), (ii) low water exchange rate (+/- 500Lkg(-1) feed) and neutral pH (+/- 7.3) and (iii) low water exchange rate (+/- 500Lkg(-1) feed) and low pH (+/- 5.8). Plasma cortisol concentrations at day 70 were higher (24.4 +/- 9.5ngmL(-1)) for fish kept at low pH when compared to fish kept at neutral pH (12.0 +/- 0.1 and 8.7 +/- 0.2ngmL(-1)). Water cortisol and testosterone concentrations at day 35 were higher at low pH than at neutral pH, whereas water 11-KT and 17,20-P did not differ among treatments. At day 70, there were no significant differences between low and high pH. These results demonstrate that low pH contributes to increased plasma cortisol concentrations and to its accumulation in water, possibly indicating a stress response to low pH. The higher concentration of testosterone but not of the other sex hormones point to unspecified reproductive effects that need further investigation.PhD scholarship - FCT - the National Foundation for Science and Technology of Portugal through QREN-POPH Advanced Training European Social Fund and National funds (MEC) [SFRH/BD/65673/2009]info:eu-repo/semantics/publishedVersio

    Curriculum Setting and Pre-Clinical Dental Students' Stress Level

    Get PDF
    Objectives: The first two years of Dental School are commonly known to be the most stressful in a student’s academic career. Very few studies, however, consider both the pressures of dental school and their causes. In order to understand the relationship between the curriculum and its stressful effects it has on the first (D1) and second-year (D2) dental students, a cross-sectional study was performed at the University of New England College of Dental Medicine (UNE-CDM) during the fall and spring semesters of the 2015-2016 academic year. Methods: 64 D1 and 63 D2 dental students were asked to voluntarily complete an anonymous 27-question survey regarding demographic characteristics and the curriculum-related stressors. Researchers utilized the modified Dental Environment Scale (DES) to rate the stress levels. Results: This study revealed that the D2 students felt more stress than the D1 students overall. D2 students experienced more anxiety in their Spring semester of their second year. In general, students who lived with their immediate family felt less stress. Students twenty-five and over experienced less stress than their younger classmates. Conclusions: The study provided valuable information about the current structure of the curriculum at a newly established dental school. This study could provide insight into curriculum-related stress among pre-clinical dental students, which could guide dental schools in making curricular changes that help alleviate stressors during particularly stressful semesters. Furthermore, the outcomes of this project could provide dental schools the information necessary to develop student support programs to help balance students’ lives and intense course loads

    The Lantern Vol. 63, No. 2, Spring 1996

    Get PDF
    • Poet, Lead Me On • St. Patrick\u27s Day • The Last Three Days • The Impressionable • Roundabout • The Bench • Carnivorous • Kyrie • Second Glance • Porch • Cruel Design • A Mime • Flaxen Crown • My Embryonic Ocean of Love • Stone Matrix • Voices from the Past • Skipping the Bullfight: Toreadors and Gaudi • Another Part of My Lacolonialism • Translucent Pane • Linguistics • Treehouse • A Disagreeable Music Piece • Vigil • A Brief History of American Poetry in Englishhttps://digitalcommons.ursinus.edu/lantern/1148/thumbnail.jp

    The Glial Regenerative Response to Central Nervous System Injury Is Enabled by Pros-Notch and Pros-NFκB Feedback

    Get PDF
    Organisms are structurally robust, as cells accommodate changes preserving structural integrity and function. The molecular mechanisms underlying structural robustness and plasticity are poorly understood, but can be investigated by probing how cells respond to injury. Injury to the CNS induces proliferation of enwrapping glia, leading to axonal re-enwrapment and partial functional recovery. This glial regenerative response is found across species, and may reflect a common underlying genetic mechanism. Here, we show that injury to the Drosophila larval CNS induces glial proliferation, and we uncover a gene network controlling this response. It consists of the mutual maintenance between the cell cycle inhibitor Prospero (Pros) and the cell cycle activators Notch and NFκB. Together they maintain glia in the brink of dividing, they enable glial proliferation following injury, and subsequently they exert negative feedback on cell division restoring cell cycle arrest. Pros also promotes glial differentiation, resolving vacuolization, enabling debris clearance and axonal enwrapment. Disruption of this gene network prevents repair and induces tumourigenesis. Using wound area measurements across genotypes and time-lapse recordings we show that when glial proliferation and glial differentiation are abolished, both the size of the glial wound and neuropile vacuolization increase. When glial proliferation and differentiation are enabled, glial wound size decreases and injury-induced apoptosis and vacuolization are prevented. The uncovered gene network promotes regeneration of the glial lesion and neuropile repair. In the unharmed animal, it is most likely a homeostatic mechanism for structural robustness. This gene network may be of relevance to mammalian glia to promote repair upon CNS injury or disease

    An Influenza A/H1N1/2009 Hemagglutinin Vaccine Produced in Escherichia coli

    Get PDF
    The A/H1N1/2009 influenza pandemic made evident the need for faster and higher-yield methods for the production of influenza vaccines. Platforms based on virus culture in mammalian or insect cells are currently under investigation. Alternatively, expression of fragments of the hemagglutinin (HA) protein in prokaryotic systems can potentially be the most efficacious strategy for the manufacture of large quantities of influenza vaccine in a short period of time. Despite experimental evidence on the immunogenic potential of HA protein constructs expressed in bacteria, it is still generally accepted that glycosylation should be a requirement for vaccine efficacy.We expressed the globular HA receptor binding domain, referred to here as HA(63-286)-RBD, of the influenza A/H1N1/2009 virus in Escherichia coli using a simple, robust and scalable process. The recombinant protein was refolded and purified from the insoluble fraction of the cellular lysate as a single species. Recombinant HA(63-286)-RBD appears to be properly folded, as shown by analytical ultracentrifugation and bio-recognition assays. It binds specifically to serum antibodies from influenza A/H1N1/2009 patients and was found to be immunogenic, to be capable of triggering the production of neutralizing antibodies, and to have protective activity in the ferret model.Projections based on our production/purification data indicate that this strategy could yield up to half a billion doses of vaccine per month in a medium-scale pharmaceutical production facility equipped for bacterial culture. Also, our findings demonstrate that glycosylation is not a mandatory requirement for influenza vaccine efficacy

    Jet-induced star formation in gas-rich galaxies

    Get PDF
    Feedback from active galactic nuclei (AGN) has become a major component in simulations of galaxy evolution, in particular for massive galaxies. AGN jets have been shown to provide a large amount of energy and are capable of quenching cooling flows. Their impact on the host galaxy, however, is still not understood. Subgrid models of AGN activity in a galaxy evolution context so far have been mostly focused on the quenching of star formation. To shed more light on the actual physics of the "radio mode" part of AGN activity, we have performed simulations of the interaction of a powerful AGN jet with the massive gaseous disc (10^11 solar masses) of a high-redshift galaxy. We spatially resolve both the jet and the clumpy, multi-phase interstellar medium (ISM) and include an explicit star formation model in the simulation. Following the system over more than 10^7 years, we find that the jet activity excavates the central region, but overall causes a significant change to the shape of the density probability distribution function and hence the star formation rate due to the formation of a blast wave with strong compression and cooling in the ISM. This results in a ring- or disc-shaped population of young stars. At later times, the increase in star formation rate also occurs in the disc regions further out since the jet cocoon pressurizes the ISM. The total mass of the additionally formed stars may be up to 10^10 solar masses for one duty cycle. We discuss the details of this jet-induced star formation (positive feedback) and its potential consequences for galaxy evolution and observable signatures.Comment: 14 pages, 10 figures. Accepted for publication in MNRAS. Added more details and clarifications after referee report. For associated movies, see http://www.mpe.mpg.de/~vgaibler/jet-disk-sf

    Arabinogalactan-protein and pectin epitopes in relation to an extracellular matrix surface network and somatic embryogenesis and callogenesis in Trifolium nigrescens Viv

    Get PDF
    The formation of an extracellular matrix surface network (ECMSN), and associated changes in the distribution of arabinogalactan-protein and pectin epitopes, have been studied during somatic embryogenesis (SE) and callogenesis of Trifolium nigrescens Viv. Scanning electron microscopy observations revealed the occurrence of an ECMSN on the surface of cotyledonary-staged somatic embryos as well as on the peripheral, non-regenerating callus cells. The occurrence of six AGP (JIM4, JIM8, JIM13, JIM16, LM2, MAC207) and four pectin (JIM5, JIM7, LM5, LM6) epitopes was analysed during early stages of SE, in cotyledonary-staged somatic embryos and in non-embryogenic callus using monoclonal antibodies. The JIM5 low methyl-esterified homogalacturonan (HG) epitope localized to ECMSN on the callus surface but none of the epitopes studied were found to localize to ECMSN over mature somatic embryos. The LM2 AGP epitope was detected during the development of somatic embryos and was also observed in the cell walls of meristematic cells from which SE was initiated. The pectic epitopes JIM5, JIM7, LM5 and LM6 were temporally regulated during SE. The LM6 arabinan epitope, carried by side chains of rhamnogalacturonan-I (RG-I), was detected predominantly in cells of embryogenic swellings, whilst the LM5 galactan epitope of RG-I was uniformly distributed throughout the ground tissue of cotyledonary-staged embryoids but not detected at the early stages of SE. Differences in the distribution patterns of low and high methyl-esterified HG were detected: low ester HG (JIM5 epitope) was most abundant during the early steps of embryo formation and highly methyl-esterified form of HG (JIM7 epitope) became prevalent during embryoid maturation

    Phase 1/2a Study of the Malaria Vaccine Candidate Apical Membrane Antigen-1 (AMA-1) Administered in Adjuvant System AS01B or AS02A

    Get PDF
    Contains fulltext : 79496.pdf (publisher's version ) (Open Access)BACKGROUND: This Phase 1/2a study evaluated the safety, immunogenicity, and efficacy of an experimental malaria vaccine comprised of the recombinant Plasmodium falciparum protein apical membrane antigen-1 (AMA-1) representing the 3D7 allele formulated with either the AS01B or AS02A Adjuvant Systems. METHODOLOGY/PRINCIPAL FINDINGS: After a preliminary safety evaluation of low dose AMA-1/AS01B (10 microg/0.5 mL) in 5 adults, 30 malaria-naive adults were randomly allocated to receive full dose (50 microg/0.5 mL) of AMA-1/AS01B (n = 15) or AMA-1/AS02A (n = 15), followed by a malaria challenge. All vaccinations were administered intramuscularly on a 0-, 1-, 2-month schedule. All volunteers experienced transient injection site erythema, swelling and pain. Two weeks post-third vaccination, anti-AMA-1 Geometric Mean Antibody Concentrations (GMCs) with 95% Confidence Intervals (CIs) were high: low dose AMA-1/AS01B 196 microg/mL (103-371 microg/mL), full dose AMA-1/AS01B 279 microg/mL (210-369 microg/mL) and full dose AMA-1/AS02A 216 microg/mL (169-276 microg/mL) with no significant difference among the 3 groups. The three vaccine formulations elicited equivalent functional antibody responses, as measured by growth inhibition assay (GIA), against homologous but not against heterologous (FVO) parasites as well as demonstrable interferon-gamma (IFN-gamma) responses. To assess efficacy, volunteers were challenged with P. falciparum-infected mosquitoes, and all became parasitemic, with no significant difference in the prepatent period by either light microscopy or quantitative polymerase chain reaction (qPCR). However, a small but significant reduction of parasitemia in the AMA-1/AS02A group was seen with a statistical model employing qPCR measurements. SIGNIFICANCE: All three vaccine formulations were found to be safe and highly immunogenic. These immune responses did not translate into significant vaccine efficacy in malaria-naive adults employing a primary sporozoite challenge model, but encouragingly, estimation of parasite growth rates from qPCR data may suggest a partial biological effect of the vaccine. Further evaluation of the immunogenicity and efficacy of the AMA-1/AS02A formulation is ongoing in a malaria-experienced pediatric population in Mali. TRIAL REGISTRATION: www.clinicaltrials.gov NCT00385047
    • …
    corecore