13 research outputs found

    Method for Determining Air Side Convective Heat Transfer Coefficient Using Infrared Thermography

    Get PDF
    Air side convective heat transfer coefficients are among the most important parameters to know when modeling thermal systems due to their dominant impact on the overall heat transfer coefficient. Local air side convective heat transfer coefficients can often prove challenging to measure experimentally due to limitations with sensor accuracy, complexity of surface geometries, and changes to the heat transfer due to the sensor itself. Infrared thermography allows local heat transfer coefficients to be accurately determined for many different surface geometries in a manner which does not impact the results. Moreover, when determining convective heat transfer coefficients for a large number of samples, it is less costly in terms of both time and materials than other experimental methods. The method determines the heat transfer coefficient for an arbitrary region by determining the rate at which the surface temperature changes due to a step change in air temperature. To utilize the method a simple calibration is first done to determine the local thermal time constant under natural convection. Alternatively, if the thermal properties of the object are well known, a model may be used. In subsequent tests, the ratio of thermal time constant to that from the calibration test can be determined. As the material properties of the solid object are unchanged, the convective heat transfer coefficient scales inversely with the thermal time constant. A computer script has been created which automates the entire analysis process with the exception of determining the region of interest. The experimental method has been validated by comparison to other experimental methods, values from literature, and numerical simulations

    The American Bar Association Joint Task Force on Reversing the School-to-Prison Pipeline Preliminary Report

    No full text

    One stop shop: backbones trees for important phytopathogenic genera: I (2014)

    Get PDF
    Many fungi are pathogenic on plants and cause significant damage in agriculture and forestry. They are also part of the natural ecosystem and may play a role in regulating plant numbers/density. Morphological identification and analysis of plant pathogenic fungi, while important, is often hampered by the scarcity of discriminatory taxonomic characters and the endophytic or inconspicuous nature of these fungi. Molecular (DNA sequence) data for plant pathogenic fungi have emerged as key information for diagnostic and classification studies, although hampered in part by non-standard laboratory practices and analytical methods. To facilitate current and future research, this study provides phylogenetic synopses for 25 groups of plant pathogenic fungi in the Ascomycota, Basidiomycota, Mucormycotina (Fungi), and Oomycota, using recent molecular data, up-to-date names, and the latest taxonomic insights. Lineage-specific laboratory protocols together with advice on their application, as well as general observations, are also provided. We hope to maintain updated backbone trees of these fungal lineages over time and to publish them jointly as new data emerge. Researchers of plant pathogenic fungi not covered by the present study are invited to join this future effort. Bipolaris, Botryosphaeriaceae, Botryosphaeria, Botrytis, Choanephora, Colletotrichum, Curvularia, Diaporthe, Diplodia, Dothiorella, Fusarium, Gilbertella, Lasiodiplodia, Mucor, Neofusicoccum, Pestalotiopsis, Phyllosticta, Phytophthora, Puccinia, Pyrenophora, Pythium, Rhizopus, Stagonosporopsis, Ustilago and Verticillium are dealt with in this paper

    Summary and Review of Investigations Relating to Reading July 1, 1965 to June 30, 1966

    No full text

    Factors in the Path From Lean to Patient Safety: Six Sigma, Goal Specificity and Responsiveness Capability

    No full text
    corecore