299 research outputs found

    Oogenesis: Matrix Revolutions

    Get PDF
    SummaryThe mechanism of egg-chamber elongation during Drosophila oogenesis has always been mysterious. A new study shows that the egg chambers spin around their long axis laying down polarised extracellular matrix, which acts as a molecular corset to restrict radial expansion

    The origin of asymmetry : early polarisation of the Drosophila germline cyst and oocyte.

    Get PDF
    The anterior-posterior axis of Drosophila is established before fertilisation when the oocyte becomes polarised to direct the localisation of bicoid and oskarmRNAs to opposite poles of the egg. Here we review recent results that reveal that the oocyte acquires polarity much earlier than previously thought, at the time when it acquires its fate. The oocyte arises from a 16 cell germline cyst, and its selection and the initial cue for its polarisation are controlled by the asymmetric segregation of a germline specific organelle called the fusome. Several different downstream pathways then interpret this asymmetry to restrict distinct aspects of oocyte identity to this cell. Mutations in any of the 6 conserved PAR proteins disrupt the early polarisation of the oocyte and lead to a failure to maintain its identity. Surprisingly, mutations affecting the control of the mitotic or meiotic cell cycle also lead to a failure to maintain the oocyte fate, indicating crosstalk between the nuclear and cytoplasmic events of oocyte differentiation. The early polarity of the oocyte initiates a series of reciprocal signalling events between the oocyte and the somatic follicle cells that lead to a reversal of oocyte polarity later in oogenesis, which defines the anterior-posterior axis of the embryo

    A repeated IMP-binding motif controls oskar mRNA translation and anchoring independently of Drosophila melanogaster IMP

    Get PDF
    Zip code–binding protein 1 (ZBP-1) and its Xenopus laevis homologue, Vg1 RNA and endoplasmic reticulum–associated protein (VERA)/Vg1 RNA-binding protein (RBP), bind repeated motifs in the 3′ untranslated regions (UTRs) of localized mRNAs. Although these motifs are required for RNA localization, the necessity of ZBP-1/VERA remains unresolved. We address the role of ZBP-1/VERA through analysis of the Drosophila melanogaster homologue insulin growth factor II mRNA–binding protein (IMP). Using systematic evolution of ligands by exponential enrichment, we identified the IMP-binding element (IBE) UUUAY, a motif that occurs 13 times in the oskar 3′UTR. IMP colocalizes with oskar mRNA at the oocyte posterior, and this depends on the IBEs. Furthermore, mutation of all, or subsets of, the IBEs prevents oskar mRNA translation and anchoring at the posterior. However, oocytes lacking IMP localize and translate oskar mRNA normally, illustrating that one cannot necessarily infer the function of an RBP from mutations in its binding sites. Thus, the translational activation of oskar mRNA must depend on the binding of another factor to the IBEs, and IMP may serve a different purpose, such as masking IBEs in RNAs where they occur by chance. Our findings establish a parallel requirement for IBEs in the regulation of localized maternal mRNAs in D. melanogaster and X. laevis

    LKB1 and AMPK maintain epithelial cell polarity under energetic stress

    Get PDF
    LKB1 is mutated in both familial and spontaneous tumors, and acts as a master kinase that activates the PAR-1 polarity kinase and the adenosine 5′monophosphate–activated kinase (AMPK). This has led to the hypothesis that LKB1 acts as a tumor suppressor because it is required to maintain cell polarity and growth control through PAR-1 and AMPK, respectively. However, the genetic analysis of LKB1–AMPK signaling in vertebrates has been complicated by the existence of multiple redundant AMPK subunits. We describe the identification of mutations in the single Drosophila melanogaster AMPK catalytic subunit AMPKα. Surprisingly, ampkα mutant epithelial cells lose their polarity and overproliferate under energetic stress. LKB1 is required in vivo for AMPK activation, and lkb1 mutations cause similar energetic stress–dependent phenotypes to ampkα mutations. Furthermore, lkb1 phenotypes are rescued by a phosphomimetic version of AMPKα. Thus, LKB1 signals through AMPK to coordinate epithelial polarity and proliferation with cellular energy status, and this might underlie the tumor suppressor function of LKB1

    Patronin/Shot Cortical Foci Assemble the Noncentrosomal Microtubule Array that Specifies the Drosophila Anterior-Posterior Axis.

    Get PDF
    Noncentrosomal microtubules play an important role in polarizing differentiated cells, but little is known about how these microtubules are organized. Here we identify the spectraplakin, Short stop (Shot), as the cortical anchor for noncentrosomal microtubule organizing centers (ncMTOCs) in the Drosophila oocyte. Shot interacts with the cortex through its actin-binding domain and recruits the microtubule minus-end-binding protein, Patronin, to form cortical ncMTOCs. Shot/Patronin foci do not co-localize with γ-tubulin, suggesting that they do not nucleate new microtubules. Instead, they capture and stabilize existing microtubule minus ends, which then template new microtubule growth. Shot/Patronin foci are excluded from the oocyte posterior by the Par-1 polarity kinase to generate the polarized microtubule network that localizes axis determinants. Both proteins also accumulate apically in epithelial cells, where they are required for the formation of apical-basal microtubule arrays. Thus, Shot/Patronin ncMTOCs may provide a general mechanism for organizing noncentrosomal microtubules in differentiated cells.This work was supported by a Wellcome Trust PRF to D. St J. (080007), and by core support from the Wellcome Trust (092096) and Cancer Research UK (A14492). D. N. was supported by a postdoctoral fellowship from the Swedish Research Council. A.R.F. is funded by a University of Cambridge PhD studentship.This is the final version of the article. It first appeared from Cell Press / Elsevier via http://dx.doi.org/10.1016/j.devcel.2016.06.010

    Barentsz is essential for the posterior localization of oskar mRNA and colocalizes with it to the posterior pole

    Get PDF
    The localization of Oskar at the posterior pole of the Drosophila oocyte induces the assembly of the pole plasm and therefore defines where the abdomen and germ cells form in the embryo. This localization is achieved by the targeting of oskar mRNA to the posterior and the localized activation of its translation. oskar mRNA seems likely to be actively transported along microtubules, since its localization requires both an intact microtubule cytoskeleton and the plus end–directed motor kinesin I, but nothing is known about how the RNA is coupled to the motor. Here, we describe barentsz, a novel gene required for the localization of oskar mRNA. In contrast to all other mutations that disrupt this process, barentsz-null mutants completely block the posterior localization of oskar mRNA without affecting bicoid and gurken mRNA localization, the organization of the microtubules, or subsequent steps in pole plasm assembly. Surprisingly, most mutant embryos still form an abdomen, indicating that oskar mRNA localization is partially redundant with the translational control. Barentsz protein colocalizes to the posterior with oskar mRNA, and this localization is oskar mRNA dependent. Thus, Barentsz is essential for the posterior localization of oskar mRNA and behaves as a specific component of the oskar RNA transport complex

    Spindle orientation: a question of complex positioning.

    Get PDF
    The direction in which a cell divides is determined by the orientation of its mitotic spindle at metaphase. Spindle orientation is therefore important for a wide range of developmental processes, ranging from germline stem cell division to epithelial tissue homeostasis and regeneration. In multiple cell types in multiple animals, spindle orientation is controlled by a conserved biological machine that mediates a pulling force on astral microtubules. Restricting the localization of this machine to only specific regions of the cortex can thus determine how the mitotic spindle is oriented. As we review here, recent findings based on studies in tunicate, worm, fly and vertebrate cells have revealed that the mechanisms for mediating this restriction are surprisingly diverse.The Wellcome Trus
    • …
    corecore