92 research outputs found
Exploring the Effects of Residence Time on the Utility of Stable Isotopes and S/C Ratios as Proxies for Ocean Connectivity
Various geochemical proxies have been developed to determine if ancient sedimentary strata were deposited in marine or nonmarine environments. A critical parameter for proxy reliability is the residence time of aqueous species in seawater, which is rarely considered for proxies relying on stable isotopes and elemental abundance ratios. Differences in residence time may affect our ability to track geologically short-lived alternations between marine and nonmarine conditions. To test this effect for sulfur and nitrogen isotopes and sulfur/carbon ratios, we investigated a stratigraphic section in the Miocene Oberpullendorf Basin in Austria. Here, previous work revealed typical seawater-like rare earth element and yttrium (REY) systematics transitioning to nonmarine-like systematics. This shift was interpreted as a brief transition from an open marine depositional setting to a restricted embayment with a reduced level of exchange with the open ocean and possibly freshwater influence. Our isotopic results show no discernible response in carbonate-associated sulfate sulfur isotopes and carbon/sulfur abundance ratios during the interval of marine restriction inferred from the REY data, but nitrogen isotopes show a decrease by several permil. This observation is consistent with the much longer residence time of sulfate in seawater compared with REY and nitrate. Hence, this case study illustrates that the residence time is a key factor for the utility of seawater proxies. In some cases, it may make geochemical parameters more sensitive to marine water influx than paleontological observations, as in the Oberpullendorf Basin. Particular care is warranted in deep time, when marine residence times likely differ markedly from the modern
Phylogenomic evidence for the origin of obligately anaerobic anammox bacteria around the great oxidation event
Funding: This work is funded by the National Science Foundation of China (92051113), the Hong Kong Research Grants Council Area of Excellence Scheme (AoE/M-403/16), the Direct Grant of CUHK (4053495), the Hong Kong Research Grants Council (RGC) General Research Fund (GRF) (14110820), and The CUHK Impact Postdoctoral Fellowship Scheme to (S. W.).The anaerobic ammonium oxidation (anammox) bacteria can transform ammonium and nitrite to dinitrogen gas, and this obligate anaerobic process accounts for up to half of the global nitrogen loss in surface environments. Yet its origin and evolution, which may give important insights into the biogeochemistry of early Earth, remains enigmatic. Here, we performed comprehensive phylogenomic and molecular clock analysis of anammox bacteria within the phylum Planctomycetes. After accommodating the uncertainties and factors influencing time estimates, which includes implementing both a traditional cyanobacteria-based and a recently developed mitochondria-based molecular dating approach, we estimated a consistent origin of anammox bacteria at early Proterozoic and most likely around the so-called Great Oxidation Event (GOE; 2.32 to 2.5 billion years ago [Ga]) which fundamentally changed global biogeochemical cycles. We further showed that during the origin of anammox bacteria, genes involved in oxidative stress adaptation, bioenergetics and anammox granules formation were recruited, which might have contributed to their survival on an increasingly oxic Earth. Our findings suggest the rising levels of atmospheric oxygen, which made nitrite increasingly available, was a potential driving force for the emergence of anammox bacteria. This is one of the first studies that link the GOE to the evolution of obligate anaerobic bacteria.Publisher PDFPeer reviewe
Limitation of fixed nitrogen and deepening of the carbonate-compensation depth through the Hirnantian at Dob's Linn, Scotland
This study was funded by University of Washington Department of Earth and Space Sciences Harry Wheeler Scholarship and Jody Bourgeois Graduate Student Support Fund granted to MCK. Stephen Hillier acknowledges support of the Scottish Government's Rural and Environment Science and Analytical Services Division (RESAS).The late Ordovician is characterized by dramatic changes in global climate concurrent with a major mass extinction and possible changes in ocean redox. To further refine our understanding of these events, we present nitrogen and carbon isotope and abundance data from the Ordovician-Silurian (O-S) Global Boundary Stratotype Section and Point at Dob's Linn, Scotland. We show that this section experienced post-depositional ammonium migration from the organic-rich to the organic-poor horizons. However, our data suggest that isotopic fractionations from ammonium substitution into illitic clay minerals are small and can be corrected. Reconstructed primary nitrogen isotope ratios indicate that unlike in tropical continental shelf sections that were transiently enriched in nitrate during the Hirnantian glaciation, the sub-tropical continental slope setting at Dob's Linn experienced persistent limitation of fixed nitrogen across the O-S boundary. Shallow subpolar settings appear to be the only environment that shows persistent nitrate availability at that time. This pattern suggests that spatial trends in marine nitrate concentrations – which are observed in the modern ocean as a result of latitudinal temperature gradients – were already established during the Paleozoic. While the average marine O2 chemocline depth may have deepened during the Hirnantian glaciation, it probably did not lead to global ventilation of the deep ocean, which may have been delayed until the Carboniferous. Furthermore, carbonate data from this and other sections suggest a deepening of the carbonate compensation depth (CCD) during the Hirnantian. This observation indicates that Pacific-style responses of the CCD to glacial/interglacial periods were operational across the O-S boundary, and that the expansion of abiotic carbonate deposition and preservation beyond the shelf break could have in-part mediated changes to surface CO2 during these extreme changes in climate.PostprintPeer reviewe
A preliminary study into the use of tree-ring and foliar geochemistry as bio-indicators for vehicular NOx pollution in Malta
Duncan V. Mifsud is the grateful recipient of an Endeavour Scholarship (Republic of Malta). The Endeavour Scholarship Scheme is part-financed by the European Union – European Social Fund (ESF): Operational Programme II – Cohesion Policy 2014-20.Emissions from traffic over the past few decades have become a significant source of air pollution. Among the pollutants emitted are nitrogen oxides (NOx), exposure to which can be detrimental to public health. Recent studies have shown that nitrogen (N) stable isotope ratios in tree-rings and foliage express a fingerprint of their major N source, making them appropriate for bio-monitoring purposes. In this study, we have applied this proxy to Aleppo pines (Pinus halepensis) at three distances from one of the busiest roads in Malta, a country known to suffer from intense traffic pollution. Our results showed that N and organic carbon (C) stable isotope ratios in tree-rings do not vary over the period 1980–2018 at any of the investigated sites; however, statistically significant spatial trends were apparent in both tree-rings and foliage. The roadside and transitional sites exhibited more positive δ15N and more negative δ13C values compared to those at a rural control site. This is likely due to the incorporation of 15N-enriched NOx and 13C-depleted CO2 from traffic pollution. Sampled top-soil also exhibited the δ15N trend. Our results constitute the first known application of dendrogeochemistry to atmospheric pollution monitoring in Malta.PostprintPeer reviewe
Sedimentary exhalative venting of bioavailable nitrogen into the early ocean
EES acknowledges financial support from the School of Earth & Environmental Sciences, St Andrews. DDG acknowledges the support of NSERC for his Discovery grant (grant number 04834).Ore deposits found in Proterozoic marine sedimentary basins supply much of the world's zinc. Many of the deposits formed contemporaneously with their host sediments when saline brines circulating from deeper in the basin reached the sea floor. Textural, geochemical and isotopic features of these SEDEX (‘sedimentary-exhalative’) deposits and their host sediments indicate that biologically active seeps, vents and brine pools were a feature of many ore-forming systems. In mineralised pockets of mid-Proterozoic basins, these ‘microbial oases’ were productive areas in an otherwise low productivity, anoxic, deep marine realm. Here we hypothesize that these metal-rich brines which circulated through organic matter-rich substrate also carried high levels of fixed nitrogen and stimulated distinct ecosystems at sites of mineralisation, or enhanced productivity more broadly in the basin. We tested this hypothesis with organic carbon and nitrogen analyses of samples of carbonaceous siltstone and shale from the 1.64 Ga Barney Creek Formation of northern Australia. The Barney Creek Formation hosts several SEDEX Zn systems, including one of the world's largest deposits at McArthur River Mine (the HYC deposit). Samples come from the mineralised edge of HYC and from correlated strata in drill cores at varying distances (1-60 km) from the deposit. The data reveal lower ratios of total organic carbon (TOC) to total nitrogen (TN) closer to the ore body. Strong correlations (r2>0.7) between TOC and TN and the absence of excess N in the samples suggest that most N was buried as bound to organic matter. Bioavailable N was thus probably more abundant closer to HYC, consistent with fixed nitrogen input by hydrothermal fluids. If correct, our data may suggest that such a hydrothermal nitrogen point source enabled microbes to develop lower C:N ratios in their biomass. A hydrothermal nitrogen source is also supported by a gradient in δ15N values from = +4‰ proximal to the vent to +7.5‰ in distal sites, which may point towards recycling of ammonium from the underlying Wollogorang Formation (1.73 Ga). This unit has previously been identified as a source of over-mature hydrocarbons to the ore-forming fluid. We speculate that, during the mid-Proterozoic, fixed nitrogen carried by SEDEX hydrothermal brines may have locally offset the lack of aerobic nutrient remineralization that characterized most of the anoxic Precambrian deep ocean and thus stimulated biological productivity in areas where the brines reached the sea floor, and, possibly, more broadly as spent brines mixed into the water column.PostprintPeer reviewe
Exploring the influence of atmospheric CO2 and O2 levels on the utility of nitrogen isotopes as proxy for biological N2 fixation
Funding: M.M.G. was funded by the DFG: SPP1833 grants GE2558/3-1 and GE2558/4-1. E.E.S. acknowledges funding from an NERC Frontiers grant (NE/V010824/1). Funding for open access publication was awarded by the Federal Government, the state of Mecklenburg-Vorpommen (FKZ VIII-0639-INP00-2023/004-002), and the Leipzig Institute for PlasmaScience and Technology to N.W.Biological N2 fixation (BNF) is traced to the Archean. The nitrogen isotopic fractionation composition (δ15N) of sedimentary rocks is commonly used to reconstruct the presence of ancient diazotrophic ecosystems. While δ15N has been validated mostly using organisms grown under present-day conditions; it has not under the pre-Cambrian conditions, when atmospheric pO2 was lower and pCO2 was higher. Here, we explore δ15N signatures under three atmospheres with (i) elevated CO2 and no O2 (Archean), (ii) present-day CO2, and O2 and (iii) future elevated CO2, in marine and freshwater, heterocytous cyanobacteria. Additionally, we augment our data set from literature for more generalized dependencies of δ15N and the associated fractionation factor epsilon (ε = δ15Nbiomass – δ15NN2) during BNF in Archaea and Bacteria, including cyanobacteria, and habitats. The ε ranges between 3.70‰ and −4.96‰ with a mean ε value of −1.38 ± 0.95‰, for all bacteria, including cyanobacteria, across all tested conditions. The expanded data set revealed correlations of isotopic fractionation of BNF with CO2 concentrations, toxin production, and light, although within 1‰. Moreover, correlation showed significant dependency of ε to species type, C/N ratios and toxin production in cyanobacteria, albeit it within a small range (−1.44 ± 0.89‰). We therefore conclude that δ15N is likely robust when applied to the pre-Cambrian-like atmosphere, stressing the strong cyanobacterial bias. Interestingly, the increased fractionation (lower ε) observed in the toxin-producing Nodularia and Nostoc spp. suggests a heretofore unknown role of toxins in modulating nitrogen isotopic signals that warrants further investigation.Peer reviewe
Feedback between carbon and nitrogen cycles during the Ediacaran Shuram excursion
This research is supported by the National Natural Science Foundation of China (41872032, 41830215, 41930320) and the Chinese ‘111’ project (B20011).The middle Ediacaran Period records one of the deepest negative carbonate carbon isotope (δ13Ccarb) excursions in Earth history (termed the Shuram excursion). This excursion is argued by many to represent a large perturbation of the global carbon cycle. If true, this event may also have induced significant changes in the nitrogen cycle, because carbon and nitrogen are intimately coupled in the global ocean. However, the response of the nitrogen cycle to the Shuram excursion remains ambiguous. Here, we reported high resolution bulk nitrogen isotope (δ15N) and organic carbon isotope (δ13Corg) data from the upper Doushantuo Formation in two well-preserved sections (Jiulongwan and Xiangerwan) in South China. The Shuram-equivalent excursion is well developed in both localities, and our results show a synchronous decrease in δ15N across the event. This observation is further supported by bootstrapping simulations taking into account all published δ15N data from the Doushantuo Formation. Isotopic mass balance calculations suggest that the decrease in δ15N during the Shuram excursion is best explained by the reduction of isotopic fractionation associated with water column denitrification (εwd) in response to feedbacks between carbon and nitrogen cycling, which were modulated by changes in primary productivity and recycled nutrient elements through remineralization of organic matter. The study presented here thus offers a new perspective for coupled variations in carbon and nitrogen cycles and sheds new light on this critical time in Earth history.Publisher PDFPeer reviewe
Linkages between nitrogen cycling, nitrogen isotopes, and environmental properties in paleo-lake basins
This work was funded by the National Natural Science Foundation of China (no. 41830425). E.E. Stüeken acknowledges funding from a Natural Environment Research Council grant (no. NE/V010824/1).The linkages between nitrogen cycling, nitrogen isotopes, and environmental properties are fundamental for reconstructing nitrogen biogeochemistry. While the impact of ocean redox changes on nitrogen isotopes is relatively well understood, it is poorly known how nitrogen responds to changes in pH and salinity. To fill the knowledge gap, we explore the effects of these environmental parameters using a well-controlled set of samples from Carboniferous−Paleogene lake sediments in China. Our results show that the threshold of 10−12‰ in δ15N works to distinguish alkaline (pH > 9) from circum-neutral conditions. Elevated Mo levels in the alkaline samples support the idea of NH3 volatilization from a reducing water column in an alkaline setting. For non-alkaline lakes, δ15N values tend to be higher (up to +10‰) in more saline, anoxic settings, which is attributed to either the expansion of stagnant anoxic waters spurring water-column denitrification or a shift from plant-based toward more microbially dominated ecosystems or both. Our results imply that salinity-induced redox stratification and basicity can alter nitrogen biogeochemical cycling beyond what is shown by the marine nitrogen isotope record alone. This finding will result in an improved understanding of the dynamic controls of δ15N in sediments and lead to better biogeochemical interpretations of paleo-environmental conditions from unknown environmental settings on Earth and beyond Earth.PostprintPeer reviewe
Nitrogen isotope ratios trace high-pH conditions in a terrestrial Mars analog site
This research was financially supported by the Leverhulme Trust to T.W.L. E.E.S. acknowledges start-up funds from the University of St. Andrews. The NASA Astrobiology Institute under Cooperative Agreement no. NNA15BB03A issued through the Science Mission Directorate also provided funds as did a NASA Fellowship in support of C.T. under Cooperative Agreement no. 80NSSC19K1739 issued through the NASA Office of STEM Engagement.High-pH alkaline lakes are among the most productive ecosystems on Earth and prime targets in the search for life on Mars; however, a robust proxy for such settings does not yet exist. Nitrogen isotope fractionation resulting from NH3 volatilization at high pH has the potential to fill this gap. To validate this idea, we analyzed samples from the Nördlinger Ries, a Miocene impact crater lake that displayed pH values up to 9.8 as inferred from mineralogy and aqueous modeling. Our data show a peak in δ15N of +17‰ in the most alkaline facies, followed by a gradual decline to around +5‰, concurrent with the proposed decline in pH, highlighting the utility of nitrogen isotopes as a proxy for high-pH conditions. In combination with independent mineralogical indicators for high alkalinity, nitrogen isotopes can provide much-needed quantitative constraints on ancient atmospheric Pco2 (partial pressure of CO2) and thus climatic controls on early Earth and Mars.Publisher PDFPeer reviewe
Effects of pH on redox proxies in a Jurassic rift lake : implications for interpreting environmental records in deep time
This work was supported at the University of California, Riverside by the NSF-EAR FESD Program and the NASA Astrobiology Institute under Cooperative Agreement No. NNA15BB03A issued through the Science Mission Directorate. We thank Roger Buick (UW) for financial support of the carbon and nitrogen isotope work. EES acknowledges support from a NASA postdoctoral fellowship, as well as valuable discussions about the Newark basin with Charlotte B. Schreiber. GDL thanks the Agouron Institute for providing funding for the Waters Autospec GC-MS instrument at UCR.It is widely agreed that the Earth’s atmosphere and oceans have undergone major redox changes over the last 2.5 billion years. However, the magnitude of these shifts remains a point of debate because it is difficult to reconstruct concentrations of dissolved O2 from indirect proxies in sedimentary archives. In this study, we show that an additional complicating factor that is rarely considered may be the pH of the water column. We analyzed rock samples from the early Jurassic Towaco Formation in the Newark basin (eastern USA), comprising deposits of a rift lake that became temporarily redox stratified. New biomarker evidence points to increasingly saline aquatic conditions during the second half of the lake’s history, with a salinity stratification that induced redox stratification, including evidence for water column anoxia, and that state may also explain the disappearance of macrofauna at this time. Distinctive lipid biomarker assemblages and stable nitrogen isotope data support previous mineralogical indications that the lake was alkaline (pH ≥ 9) during its saline episode. Despite the biomarker and macrofaunal evidence for anoxia, ratios of Fe/Al and FeHR/FeT show only small to no enrichments in the anoxic horizon compared to oxic facies in the same section – counter to what is commonly observed in anoxic marine settings. Molybdenum, As, V, U and to some degree Cd show enrichments in the anoxic interval, whereas Co, Ni, Cu, Zn and Cr do not. These patterns are most parsimoniously explained by differential pH effects on the solubility of these elements. Extrapolating from these observations in lacustrine strata, we speculate that a secular increase in seawater pH over Earth’s history as recently proposed may have helped modulate the magnitude of trace metal enrichments in marine shales, although other factors such as atmospheric and oceanic redox likely dominated the observed enrichment patterns. Further, a decrease in the solubility of ferrous iron, a major O2 sink, with increasing pH may have contributed to ocean oxygenation. In summary, our results highlight the potential importance of pH in influencing global biogeochemical cycles for multiple elements and for the interpretation of ancient nitrogen isotope signatures.PostprintPeer reviewe
- …