727 research outputs found

    Density Perturbations in Heavy-Ion Collisions below the Critical Point

    Get PDF
    Heavy ion collisions at large baryon density may exhibit a first order phase transition from a chirally symmetric phase to the symmetry broken ground state. This should then lead to large density inhomogeneities, which affect the relative hadron multiplicities.Comment: 1 page, 1 figure, contribution to the GSI annual report 200

    Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: Thermal production vs. Coalescence

    Full text link
    We study the production of (hyper-)nuclei and di-baryons in most central heavy Ion collisions at energies of Elab=1−160AE_{lab}=1-160 A GeV. In particular we are interested in clusters produced from the hot and dense fireball. The formation rate of strange and non-strange clusters is estimated by assuming thermal production from the intermediate phase of the UrQMD-hydro hybrid model and alternatively by the coalescence mechanism from a hadronic cascade model. Both model types are compared in detail. For most energies we find that both approaches agree in their predictions for the yields of the clusters. Only for very low beam energies, and for di-baryons including Ξ\Xi's, we observe considerable differences. We also study the production of anti-matter clusters up to top RHIC energies and show that the observation of anti-4He^4He and even anti-Λ4He^4_{\Lambda}He is feasible. We have found a considerable qualitative difference in the energy dependence of the strangeness population factor RHR_H when comparing the thermal production with the coalescence results.Comment: 9 pages, 8 figures and 2 tables, version accepted by PL

    Probing the density dependence of the symmetry potential in intermediate energy heavy ion collisions

    Get PDF
    Based on the ultrarelativistic quantum molecular dynamics (UrQMD) model, the effects of the density-dependent symmetry potential for baryons and of the Coulomb potential for produced mesons are investigated for neutron-rich heavy ion collisions at intermediate energies. The calculated results of the Delta-/Delta++ and pi -/pi + production ratios show a clear beam-energy dependence on the density-dependent symmetry potential, which is stronger for the pi -/pi + ratio close to the pion production threshold. The Coulomb potential of the mesons changes the transverse momentum distribution of the pi -/pi + ratio significantly, though it alters only slightly the pi- and pi+ total yields. The pi- yields, especially at midrapidity or at low transverse momenta and the p-/pi+ ratios at low transverse momenta, are shown to be sensitive probes of the density-dependent symmetry potential in dense nuclear matter. The effect of the density-dependent symmetry potential on the production of both, K0 and K+ mesons, is also investigated

    From FAIR to RHIC, hyper clusters and an effective strange EoS for QCD

    Full text link
    Two major aspects of strange particle physics at the upcoming FAIR and NICA facilities and the RHIC low energy scan will be discussed. A new distinct production mechanism for hypernuclei will be presented, namely the production abundances for hypernuclei from Λ\Lambda's absorbed in the spectator matter in peripheral heavy ion collisions. As strangeness is not uniformly distributed in the fireball of a heavy ion collision, the properties of the equation of state therefore depend on the local strangeness fraction. The same, inside neutron stars strangeness is not conserved and lattice studies on the properties of finite density QCD usually rely on an expansion of thermodynamic quantities at zero strange chemical potential, hence at non-zero strange-densities. We will therefore discuss recent investigations on the EoS of strange-QCD and present results from an effective EoS of QCD that includes the correct asymptotic degrees of freedom and a deconfinement and chiral phase transition.Comment: Talk given at the international conference on Strangeness in Quark Matter 2011 in Krako

    Some Comments on Relativistic Hydrodynamics and Fuzzy Bags

    Full text link
    Three subjects are considered here: the relativistic hydrodynamics equations for a boost-invariant expanding fluid; the fuzzy bag model for the pressure which recently appeared in QCD phenomenology; and the early space-time evolution of the QCD matter, drawn from model studies, which can also be expected to arise in realistic fluid dynamics relevant to heavy ion collisions at LHC.Comment: 10 pages, 5 figures; v3: additional discussion of lattice data, minor clarifications, references adde

    Non-ideal particle distributions from kinetic freeze out models

    Get PDF
    In fluid dynamical models the freeze out of particles across a three dimensional space-time hypersurface is discussed. The calculation of final momentum distribution of emitted particles is described for freeze out surfaces, with both space-like and time-like normals, taking into account conservation laws across the freeze out discontinuity
    • …
    corecore