33 research outputs found

    The Production of a New MAGE-3 Peptide Presented to Cytolytic T Lymphocytes by HLA-B40 Requires the Immunoproteasome

    Get PDF
    By stimulating human CD8+ T lymphocytes with autologous dendritic cells infected with an adenovirus encoding MAGE-3, we obtained a cytotoxic T lymphocyte (CTL) clone that recognized a new MAGE-3 antigenic peptide, AELVHFLLL, which is presented by HLA-B40. This peptide is also encoded by MAGE-12. The CTL clone recognized MAGE-3–expressing tumor cells only when they were first treated with IFN-Îł. Since this treatment is known to induce the exchange of the three catalytic subunits of the proteasome to form the immunoproteasome, this result suggested that the processing of this MAGE-3 peptide required the immunoproteasome. Transfection experiments showed that the substitution of ÎČ5i (LMP7) for ÎČ5 is necessary and sufficient for producing the peptide, whereas a mutated form of ÎČ5i (LMP7) lacking the catalytically active site was ineffective. Mass spectrometric analyses of in vitro digestions of a long precursor peptide with either proteasome type showed that the immunoproteasome produced the antigenic peptide more efficiently, whereas the standard proteasome more efficiently introduced cleavages destroying the antigenic peptide. This is the first example of a tumor-specific antigen exclusively presented by tumor cells expressing the immunoproteasome

    Identification of Privileged Scaffolds from a Diversified Chemical Library forβ-Secretase Inhibition

    No full text
    International audienceA privileged structure has been identified within the 1,300-member diversified library by rational selection of the compounds to be tested prior to the screening towards enzymatic ÎČ-secretase (BACE-1) assay. The identified hexahydrobenzothiazole privileged structure has been optimised and a preliminary structureactivity study has been performed

    New antiviral nucleoside prodrugs await application.

    No full text
    In this review, we intend to highlight outstanding concepts of antiviral nucleoside prodrugs which have been developed in recent years, so as to improve the efficacy of a given antiviral drug or to overcome some drug deficiencies. Examples of antiviral carrier-linked nucleoside prodrugs or nucleoside bioprecursors are described, and their active mechanisms discussed. The described nucleoside prodrugs are classified in two structural classes: prodrugs bearing molecular modifications on the sugar moiety and prodrugs bearing molecular modifications on the nucleic base. Despite the important research work accomplished through out the world during the last few years in developing improved antiviral drugs for the treatment of HIV (human immunodeficiency virus), HBV (hepatitis B virus), HCV (hepatitis C virus), HSV (herpes simplex virus), HCMV (human cytomegalovirus), etc infections, only few nucleoside antiviral prodrugs are marketed, while promising prodrugs deriving from original concepts were developed. The most relevant concepts are discussed: (1) - pronucleotide approach allows the design of prodrugs, which by-pass the first kinase phosphorylation step; (2) - drug design based on Bodor's concept for brain delivery improved drugs and (3) - 5'-O-carbonate nucleosides and deaminase approaches, which allow active drug regeneration. Nonetheless, none of these innovative models have reached the market.info:eu-repo/semantics/publishe

    Toward a Full Characterization of the Human 20S Proteasome Subunits and Their Isoforms by a Combination of Proteomic Approaches

    No full text
    International audienceThe 20S proteasome is a multicatalytic protein complex, present in all eukaryotic cells, that plays a major role in intracellular protein degradation. In mammalian cells, this symmetrical cylindrical complex is composed of two copies each of seven different alpha and beta subunits arranged into four stacked rings (alpha(7)beta(7)beta(7)alpha(7)). Separation by two-dimensional (2D) gel electrophoresis of the human erythrocytes 20S proteasome subunits and mass spectrometry (MS) identification of all the observed spots reveal the presence of multiple isoforms for most of the subunits. These isoforms could correspond to protein variants and/or posttranslational modifications that may influence the 20S proteasome proteolytic activity. Their characterization is therefore important to establish the rules governing structure/activity relationships of the human 20S proteasome. This chapter describes the use of a combination of proteomic approaches to characterize the human 20S proteasome subunit isoforms separated by 2D gel electrophoresis. A "top-down" strategy was developed to determine by electrospray MS the molecular mass of the intact protein after its passive elution from the gel. Comparison of the experimental molecular mass to the theoretical one can reveal the presence of possible modifications. "Bottom-up" proteomic approaches are then performed and, after protein digestion, tandem MS analyses of the modified peptides allow the characterization and location of the modification. These methods are discussed for the study of the human erythrocytes 20S proteasome subunit isoforms

    Scrutiny of Mycobacterium tuberculosis 19 kDa antigen proteoforms provides new insights in the lipoglycoprotein biogenesis paradigm

    No full text
    International audiencePost-translational modifications (PTMs) are essential processes conditioning the biophysical properties and biological activities of the vast majority of mature proteins. However, occurrence of several distinct PTMs on a same protein dramatically increases its molecular diversity. The comprehensive understanding of the functionalities resulting from any particular PTM association requires a highly challenging full structural description of the PTM combinations. Here, we report the in-depth exploration of the natural structural diversity of the M. tuberculosis (Mtb) virulence associated 19 kDa lipoglycoprotein antigen (LpqH) using intact protein high-resolution mass spectrometry (HR-MS) coupled to liquid chromatography. Combined top-down and bottom-up HR-MS analyses of the purified Mtb LpqH protein allow, for the first time, to uncover a complex repertoire of about 130 molecular species resulting from the intrinsically heterogeneous combination of lipidation and glycosylation together with some truncations. Direct view on the co-occurring PTMs stoichiometry reveals the presence of functionally distinct LpqH lipidation states and indicates that glycosylation is independent from lipidation. This work allowed the identification of a novel unsuspected phosphorylated form of the unprocessed preprolipoglycoprotein totally absent from the current lipoglycoprotein biogenesis pathway and providing new insights into the biogenesis and functional determinants of the mycobacterial lipoglycoprotein interacting with the host immune PRRs
    corecore