414 research outputs found

    Growth and Characterization of Anthranilic acid Crystals

    Get PDF
    ABSTRACTSingle crystals of Anthranilic acid (AA) have been successfully grown and purity of materials has been increased by repeated recrystallization process. Single crystals have been grown by slow evaporation technique. The grown crystal was characterized by Single crystal X-Ray diffraction, Powder XRD, FTIR, UV-Vis, DTA/TGA, Dielectric studies and SHG respectively. The observed results from various characterization show the suitability of NLO application. The second harmonic generation of the grown crystal was checked using Kurtz and Perry technique. Thermal stability and melting point of the grown crystal were found by thermal analysis. The Physical strength of the grown AA crystal was measured from Vicker’s hardness test.Â

    A Systematic and Evidence-Based Approach to the Management of Vertebral Metastasis

    Get PDF
    Diagnosis and management of vertebral metastasis requires a systematic approach to patient identification as well as selection of appropriate therapy. Rapid identification and prompt intervention in the treatment of malignant epidural spinal cord compression (MESCC) is key to maintaining quality of life. This paper provides a series of tools as well as guidance in selecting effective and evidence-based therapy individualized to the specific patient

    Development of Processing Techniques for Advanced Thermal Protection Materials

    Get PDF
    Thermal Protection Materials Branch (TPMB) has been involved in various research programs to improve the properties and structural integrity of the existing aerospace high temperature materials. Specimens from various research programs were brought into the analytical laboratory for the purpose of obtaining and refining the material characterization. The analytical laboratory in TPMB has many different instruments which were utilized to determine the physical and chemical characteristics of materials. Some of the instruments that were utilized by the SJSU students are: Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction Spectrometer (XRD), Fourier Transform-Infrared Spectroscopy (FTIR), Ultra Violet Spectroscopy/Visible Spectroscopy (UV/VIS), Particle Size Analyzer (PSA), and Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). The above mentioned analytical instruments were utilized in the material characterization process of the specimens from research programs such as: aerogel ceramics (I) and (II), X-33 Blankets, ARC-Jet specimens, QUICFIX specimens and gas permeability of lightweight ceramic ablators. In addition to analytical instruments in the analytical laboratory at TPMB, there are several on-going experiments. One particular experiment allows the measurement of permeability of ceramic ablators. From these measurements, physical characteristics of the ceramic ablators can be derived

    Ethyl 4-(3-hydroxy­phen­yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate

    Get PDF
    In the mol­ecular structure of the title compound, C21H25NO4, the dihydro­pyridine ring adopts a flattened boat conformation while the cyclo­hexenone ring is in an envelope conformation. In the crystal structure, mol­ecules are linked into a two-dimensional network parallel to (10) by N—H⋯O and O—H⋯O hydrogen bonds. The network is generated by R 4 4(30) and R 4 4(34) graph-set motifs

    (E)-2-({2-[(E)-(Hy­droxy­imino)­meth­yl]phen­oxy}meth­yl)-3-phenyl­acrylonitrile

    Get PDF
    In the title compound, C17H14N2O2, the hy­droxy­ethanimine group adopts an anti­periplanar conformation. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming zigzag chains running along the c axis

    Electrical impedance analysis of ZnO thin films for ammonia gas sensors

    Get PDF
    The electrical impedance analysis of the ZnO films has been performed using complex impedance spectroscopy in the frequency range from 100 Hz to 1 MHz with temperature change from 70 to 175℃. Combined impedance and modulus plots have been used to analyse the sample behaviour as a function of frequency at different temperatures. Temperature dependence of ac conductivity indicates that the electrical conduction in the material is a thermally activated process. The frequency dependence of the ac conduction activation energy is found to obey a mathematical formula. It is concluded that the conductivity mechanism in the ZnO sensor is controlled by surface reaction. The operating temperature of the ZnO gas sensor is 175℃. The impedance spectrum also exhibited a decreased semicircle radius as the ammonia concentration is increased from 50 to 500 ppm. In addition, the impedance spectrum also exhibited a decreased semicircle radius with the exposure time increase from 0 to 20 min thereafter slightly increased. Impedance spectroscopy analysis has shown that the resistance variation due to grain boundaries significantly contributed to the gas sensor characteristics

    Pneumocephalus after the Treatment of an Inoperable Superior Sulcus Tumor with Chemoradiation

    Get PDF
    Background. Pneumocephalus is a rare phenomenon that can occur as a complication after operations involving the thoracic discs, following thoracotomy for tumor resection, and after an intracranial operation or cranial trauma. This complication frequently occurs when a tumor is located in the costovertebral angle and an operative intervention creates a tear in the dura resulting in a pleural-dural fistula. Case Presentation. We describe the case of a 58-year-old man with an inoperable superior sulcus tumor who developed pneumocephalus after the initiation of chemoradiation secondary to a pleural-dural fistula. Conclusions. Although a rare occurrence, pneumocephalus should be considered when patients with tumors in the superior sulcus treated with radiation develop neurologic symptoms characteristic of increased intracranial pressure

    Chasing Zero Harm in Radiation Oncology: Using Pre-treatment Peer Review

    Get PDF
    Purpose: The Joint Commission has encouraged the healthcare industry to become “High Reliability Organizations” by “Chasing Zero Harm” in patient care. In radiation oncology, the time point of quality checks determines whether errors are prevented or only mitigated. Thus, to “chase zero” in radiation oncology, peer review has to be implemented prior to treatment initiation. A multidisciplinary group consensus peer review (GCPR) model is used pre-treatment at our institution and has been successful in our efforts to “chase zero harm” in patient care.Methods: With the GCPR model, policy-defined complex cases go through a treatment planning conference, which includes physicians, residents, physicists, and dosimetrists. Three major plan aspects are reviewed: target volumes, target and normal tissue dose coverage, and dose distributions. During the review, any team member can ask questions and afterwards a group consensus is taken regarding plan approval.Results: The GCPR model has been implemented through a commitment to peer review and creative conference scheduling. Automated analysis software is used to depict color-coded results for department approved target coverage and dose constraints. About 8% of plans required re-planning while about 23% required minor changes. The mean time for review of each plan was 8 min.Conclusions: Catching errors prior to treatment is the only way to “chase zero” in radiation oncology. Various types of errors may exist in treatment plans and our GCPR model succeeds in preventing many errors of all shapes and sizes in target definition, dose prescriptions, and treatment plans from ever reaching the patients

    Optimizing MRI sequences and images for MRI-based stereotactic radiosurgery treatment planning

    Get PDF
    © 2018 Aim: Development of MRI sequences and processing methods for the production of images appropriate for direct use in stereotactic radiosurgery (SRS) treatment planning. Background: MRI is useful in SRS treatment planning, especially for patients with brain lesions or anatomical targets that are poorly distinguished by CT, but its use requires further refinement. This methodology seeks to optimize MRI sequences to generate distortion-free and clinically relevant MR images for MRI-only SRS treatment planning. Materials and methods: We used commercially available SRS MRI-guided radiotherapy phantoms and eight patients to optimize sequences for patient imaging. Workflow involved the choice of correct MRI sequence(s), optimization of the sequence parameters, evaluation of image quality (artifact free and clinically relevant), measurement of geometrical distortion, and evaluation of the accuracy of our offline correction algorithm. Results: CT images showed a maximum deviation of 1.3 mm and minimum deviation of 0.4 mm from true fiducial position for SRS coordinate definition. Interestingly, uncorrected MR images showed maximum deviation of 1.2 mm and minimum of 0.4 mm, comparable to CT images used for SRS coordinate definition. After geometrical correction, we observed a maximum deviation of 1.1 mm and minimum deviation of only 0.3 mm. Conclusion: Our optimized MRI pulse sequences and image correction technique show promising results; MR images produced under these conditions are appropriate for direct use in SRS treatment planning
    corecore