271 research outputs found

    SUPFAM: A database of sequence superfamilies of protein domains

    Get PDF
    BACKGROUND: SUPFAM database is a compilation of superfamily relationships between protein domain families of either known or unknown 3-D structure. In SUPFAM, sequence families from Pfam and structural families from SCOP are associated, using profile matching, to result in sequence superfamilies of known structure. Subsequently all-against-all family profile matches are made to deduce a list of new potential superfamilies of yet unknown structure. DESCRIPTION: The current version of SUPFAM (release 1.4) corresponds to significant enhancements and major developments compared to the earlier and basic version. In the present version we have used RPS-BLAST, which is robust and sensitive, for profile matching. The reliability of connections between protein families is ensured better than before by use of benchmarked criteria involving strict e-value cut-off and a minimal alignment length condition. An e-value based indication of reliability of connections is now presented in the database. Web access to a RPS-BLAST-based tool to associate a query sequence to one of the family profiles in SUPFAM is available with the current release. In terms of the scientific content the present release of SUPFAM is entirely reorganized with the use of 6190 Pfam families and 2317 structural families derived from SCOP. Due to a steep increase in the number of sequence and structural families used in SUPFAM the details of scientific content in the present release are almost entirely complementary to previous basic version. Of the 2286 families, we could relate 245 Pfam families with apparently no structural information to families of known 3-D structures, thus resulting in the identification of new families in the existing superfamilies. Using the profiles of 3904 Pfam families of yet unknown structure, an all-against-all comparison involving sequence-profile match resulted in clustering of 96 Pfam families into 39 new potential superfamilies. CONCLUSION: SUPFAM presents many non-trivial superfamily relationships of sequence families involved in a variety of functions and hence the information content is of interest to a wide scientific community. The grouping of related proteins without a known structure in SUPFAM is useful in identifying priority targets for structural genomics initiatives and in the assignment of putative functions. Database URL:

    A spatio-temporal mining approach towards summarizing and analyzing protein folding trajectories

    Get PDF
    Understanding the protein folding mechanism remains a grand challenge in structural biology. In the past several years, computational theories in molecular dynamics have been employed to shed light on the folding process. Coupled with high computing power and large scale storage, researchers now can computationally simulate the protein folding process in atomistic details at femtosecond temporal resolution. Such simulation often produces a large number of folding trajectories, each consisting of a series of 3D conformations of the protein under study. As a result, effectively managing and analyzing such trajectories is becoming increasingly important. In this article, we present a spatio-temporal mining approach to analyze protein folding trajectories. It exploits the simplicity of contact maps, while also integrating 3D structural information in the analysis. It characterizes the dynamic folding process by first identifying spatio-temporal association patterns in contact maps, then studying how such patterns evolve along a folding trajectory. We demonstrate that such patterns can be leveraged to summarize folding trajectories, and to facilitate the detection and ordering of important folding events along a folding path. We also show that such patterns can be used to identify a consensus partial folding pathway across multiple folding trajectories. Furthermore, we argue that such patterns can capture both local and global structural topology in a 3D protein conformation, thereby facilitating effective structural comparison amongst conformations. We apply this approach to analyze the folding trajectories of two small synthetic proteins-BBA5 and GSGS (or Beta3S). We show that this approach is promising towards addressing the above issues, namely, folding trajectory summarization, folding events detection and ordering, and consensus partial folding pathway identification across trajectories

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the ïŹeld of medicine and water puriïŹcation, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modiïŹcation of nanoparticles and their properties were also discussed

    Engineering the Melanocortin-4 Receptor to Control Constitutive and Ligand-Mediated Gs Signaling In Vivo

    Get PDF
    The molecular and functional diversity of G protein–coupled receptors is essential to many physiological processes. However, this diversity presents a significant challenge to understanding the G protein–mediated signaling events that underlie a specific physiological response. To increase our understanding of these processes, we sought to gain control of the timing and specificity of Gs signaling in vivo. We used naturally occurring human mutations to develop two Gs-coupled engineered receptors that respond solely to a synthetic ligand (RASSLs). Our Gs-coupled RASSLs are based on the melanocortin-4 receptor, a centrally expressed receptor that plays an important role in the regulation of body weight. These RASSLs are not activated by the endogenous hormone α-melanocyte-stimulating hormone but respond potently to a selective synthetic ligand, tetrahydroisoquinoline. The RASSL variants reported here differ in their intrinsic basal activities, allowing the separation of the effects of basal signaling from ligand-mediated activation of the Gs pathway in vivo. These RASSLs can be used to activate Gs signaling in any tissue, but would be particularly useful for analyzing downstream events that mediate body weight regulation in mice. Our study also demonstrates the use of human genetic variation for protein engineering

    Classification of Protein Kinases on the Basis of Both Kinase and Non-Kinase Regions

    Get PDF
    BACKGROUND: Protein phosphorylation is a generic way to regulate signal transduction pathways in all kingdoms of life. In many organisms, it is achieved by the large family of Ser/Thr/Tyr protein kinases which are traditionally classified into groups and subfamilies on the basis of the amino acid sequence of their catalytic domains. Many protein kinases are multi-domain in nature but the diversity of the accessory domains and their organization are usually not taken into account while classifying kinases into groups or subfamilies. METHODOLOGY: Here, we present an approach which considers amino acid sequences of complete gene products, in order to suggest refinements in sets of pre-classified sequences. The strategy is based on alignment-free similarity scores and iterative Area Under the Curve (AUC) computation. Similarity scores are computed by detecting common patterns between two sequences and scoring them using a substitution matrix, with a consistent normalization scheme. This allows us to handle full-length sequences, and implicitly takes into account domain diversity and domain shuffling. We quantitatively validate our approach on a subset of 212 human protein kinases. We then employ it on the complete repertoire of human protein kinases and suggest few qualitative refinements in the subfamily assignment stored in the KinG database, which is based on catalytic domains only. Based on our new measure, we delineate 37 cases of potential hybrid kinases: sequences for which classical classification based entirely on catalytic domains is inconsistent with the full-length similarity scores computed here, which implicitly consider multi-domain nature and regions outside the catalytic kinase domain. We also provide some examples of hybrid kinases of the protozoan parasite Entamoeba histolytica. CONCLUSIONS: The implicit consideration of multi-domain architectures is a valuable inclusion to complement other classification schemes. The proposed algorithm may also be employed to classify other families of enzymes with multi-domain architecture

    High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics

    Get PDF
    Ultrafast Electron Microscopy (UEM) has been demonstrated to be an effective table-top technique for imaging the temporally-evolving dynamics of matter with subparticle spatial resolution on the time scale of atomic motion. However, imaging the faster motion of electron dynamics in real time has remained beyond reach. Here, we demonstrate more than an order of magnitude (16 times) enhancement in the typical temporal resolution of UEM by generating isolated 30 fs electron pulses, accelerated at 200 keV, via the optical-gating approach, with sufficient intensity for efficiently probing the electronic dynamics of matter. Moreover, we investigate the feasibility of attosecond optical gating to generate isolated subfemtosecond electron pulses, attaining the desired temporal resolution in electron microscopy for establishing the Attomicroscopy to allow the imaging of electron motion in the act.Comment: 19 Pages, 4 Figure

    Effect of D222G Mutation in the Hemagglutinin Protein on Receptor Binding, Pathogenesis and Transmissibility of the 2009 Pandemic H1N1 Influenza Virus

    Get PDF
    Influenza viruses isolated during the 2009 H1N1 pandemic generally lack known molecular determinants of virulence associated with previous pandemic and highly pathogenic avian influenza viruses. The frequency of the amino acid substitution D222G in the hemagglutinin (HA) of 2009 H1N1 viruses isolated from severe but not mild human cases represents the first molecular marker associated with enhanced disease. To assess the relative contribution of this substitution in virus pathogenesis, transmission, and tropism, we introduced D222G by reverse genetics in the wild-type HA of the 2009 H1N1 virus, A/California/04/09 (CA/04). A dose-dependent glycan array analysis with the D222G virus showed a modest reduction in the binding avidity to human-like (α2-6 sialylated glycan) receptors and an increase in the binding to avian-like (α2-3 sialylated glycan) receptors in comparison with wild-type virus. In the ferret pathogenesis model, the D222G mutant virus was found to be similar to wild-type CA/04 virus with respect to lethargy, weight loss and replication efficiency in the upper and lower respiratory tract. Moreover, based on viral detection, the respiratory droplet transmission properties of these two viruses were found to be similar. The D222G virus failed to productively infect mice inoculated by the ocular route, but exhibited greater viral replication and weight loss than wild-type CA/04 virus in mice inoculated by the intranasal route. In a more relevant human cell model, D222G virus replicated with delayed kinetics compared with wild-type virus but to higher titer in human bronchial epithelial cells. These findings suggest that although the D222G mutation does not influence virus transmission, it may be considered a molecular marker for enhanced replication in certain cell types.Centers for Disease Control and Prevention (U.S.)United States. National Institutes of Health (merit award R37 GM057073-13)Singapore-MIT Alliance for Research and Technolog
    • 

    corecore