26,209 research outputs found

    Nonlinear Oscillations and Bifurcations in Silicon Photonic Microresonators

    Full text link
    Silicon microdisks are optical resonators that can exhibit surprising nonlinear behavior. We present a new analysis of the dynamics of these resonators, elucidating the mathematical origin of spontaneous oscillations and deriving predictions for observed phenomena such as a frequency comb spectrum with MHz-scale repetition rate. We test predictions through laboratory experiment and numerical simulation.Comment: Main text: 5 pages, 6 figures. Supplemental material: 12 pages, 8 figure

    Carrier lifetime assessment in integrated Ge waveguide devices

    Get PDF
    Carrier lifetimes in Ge waveguides on Si are deduced from time-resolved pump-probe spectroscopy. For a 1 pm wide Ge waveguide, a lifetime of 1.6 ns is estimated for a carrier density of around 2 x10(19) cm(-3)

    The Mass-Loss Return From Evolved Stars to The Large Magellanic Cloud VI: Luminosities and Mass-Loss Rates on Population Scales

    Full text link
    We present results from the first application of the Grid of Red Supergiant and Asymptotic Giant Branch ModelS (GRAMS) model grid to the entire evolved stellar population of the Large Magellanic Cloud (LMC). GRAMS is a pre-computed grid of 80,843 radiative transfer (RT) models of evolved stars and circumstellar dust shells composed of either silicate or carbonaceous dust. We fit GRAMS models to ~30,000 Asymptotic Giant Branch (AGB) and Red Supergiant (RSG) stars in the LMC, using 12 bands of photometry from the optical to the mid-infrared. Our published dataset consists of thousands of evolved stars with individually determined evolutionary parameters such as luminosity and mass-loss rate. The GRAMS grid has a greater than 80% accuracy rate discriminating between Oxygen- and Carbon-rich chemistry. The global dust injection rate to the interstellar medium (ISM) of the LMC from RSGs and AGB stars is on the order of 1.5x10^(-5) solar masses/yr, equivalent to a total mass injection rate (including the gas) into the ISM of ~5x10^(-3) solar masses/yr. Carbon stars inject two and a half times as much dust into the ISM as do O-rich AGB stars, but the same amount of mass. We determine a bolometric correction factor for C-rich AGB stars in the K band as a function of J - K color, BC(K) = -0.40(J-K)^2 + 1.83(J-K) + 1.29. We determine several IR color proxies for the dust mass-loss rate (MLR) from C-rich AGB stars, such as log (MLR) = (-18.90)/((K-[8.0])+3.37)-5.93. We find that a larger fraction of AGB stars exhibiting the `long-secondary period' phenomenon are O-rich than stars dominated by radial pulsations, and AGB stars without detectable mass-loss do not appear on either the first-overtone or fundamental-mode pulsation sequences.Comment: 19 pages, 19 figure

    Observation of chaotic beats in a driven memristive Chua's circuit

    Get PDF
    In this paper, a time varying resistive circuit realising the action of an active three segment piecewise linear flux controlled memristor is proposed. Using this as the nonlinearity, a driven Chua's circuit is implemented. The phenomenon of chaotic beats in this circuit is observed for a suitable choice of parameters. The memristor acts as a chaotically time varying resistor (CTVR), switching between a less conductive OFF state and a more conductive ON state. This chaotic switching is governed by the dynamics of the driven Chua's circuit of which the memristor is an integral part. The occurrence of beats is essentially due to the interaction of the memristor aided self oscillations of the circuit and the external driving sinusoidal forcing. Upon slight tuning/detuning of the frequencies of the memristor switching and that of the external force, constructive and destructive interferences occur leading to revivals and collapses in amplitudes of the circuit variables, which we refer as chaotic beats. Numerical simulations and Multisim modelling as well as statistical analyses have been carried out to observe as well as to understand and verify the mechanism leading to chaotic beats.Comment: 30 pages, 16 figures; Submitted to IJB
    corecore