38 research outputs found

    Hybrid Flash-SPS of TiNiCu0.05Sn with reduced thermal conductivity

    Get PDF
    TiNiCu0·05Sn was sintered using Spark Plasma Sintering (SPS) and a new derivative processing method, hybrid Flash-SPS (hFSPS). The high heating rate achieved (7700 °C/min) produced almost single-phase samples with high density. The sample sintered at 1040 °C showed a higher power factor and a lower thermal conductivity than the SPS sample, resulting in a higher ZT at 350 °C (0.44 vs 0.35)

    The Atomic-Level Structure of Cementitious Calcium Silicate Hydrate

    Get PDF
    Efforts to tune the bulk physical properties of concrete are hindered by a lack of knowledge related to the atomic-level structure and growth of calcium silicate hydrate phases, which form about 50-60% by volume of cement paste. Here we describe the first synthesis of compositionally uniform calcium silicate hydrate phases with Ca:Si ratios tunable between 1.0 and 2.0. The calcium silicate hydrate synthesized here does not contain a secondary Ca(OH)(2) phase, even in samples with Ca:Si ratios above 1.6, which is unprecedented for synthetic calcium silicate hydrate systems. We then solve the atomic-level three-dimensional structure of these materials using dynamic nuclear polarization enhanced H-1 and Si-29 nuclear magnetic resonance experiments in combination with atomistic simulations and density functional theory chemical shift calculations. We discover that bridging interlayer calcium ions are the defining structural characteristic of single-phase cementitious calcium silicate hydrate, inducing the strong hydrogen bonding that is responsible for stabilizing the structure at high Ca:Si ratios

    Robust, Transparent Hybrid Thin Films of Phase-Change Material Sb2S3 Prepared by Electrophoretic Deposition

    Get PDF
    Thin films of polyethylenimine-stabilized Sb2S3 are prepared via electrophoretic deposition (EPD), showing strong adhesion between the deposited layers and the underlying substrate, with the films being crystallized via annealing. For amorphous films, thicknesses can be freely tuned from 0.2 to 1 μm, shrinking to 0.1–0.5 μm when crystallized, while retaining a crack- and defect-free surface, thus not impacting their good stability and maintaining their optical properties. Through UV–vis spectroscopy and subsequent modeling of the obtained spectra, it was concluded that the materials after annealing showed a reduced band gap and a demonstrably increased refractive index (n) and carrier concentration. The use of EPD for this material shows the viability of rapidly creating stable thin films of phase-change materials

    Effect of Nanostructuring on the Thermoelectric Properties of β-FeSi2

    Get PDF
    Nanostructured β-FeSi2 and β-Fe0.95Co0.05Si2 specimens with a relative density of up to 95% were synthesized by combining a top-down approach and spark plasma sintering. The thermoelectric properties of a 50 nm crystallite size β-FeSi2 sample were compared to those of an annealed one, and for the former a strong decrease in lattice thermal conductivity and an upshift of the maximum Seebeck’s coefficient were shown, resulting in an improvement of the figure of merit by a factor of 1.7 at 670 K. For β-Fe0.95Co0.05Si2, one observes that the figure of merit is increased by a factor of 1.2 at 723 K between long time annealed and nanostructured samples mainly due to an increase in the phonon scattering and an increase in the point defects. This results in both a decrease in the thermal conductivity to 3.95 W/mK at 330 K and an increase in the power factor to 0.63 mW/mK2 at 723 K

    The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma

    Get PDF

    Développement de verres, vitro-céramiques et céramiques de chalcogénures pour des applications en thermoélectricité

    No full text
    With the performance of direct conversion between thermal and electrical energy, thermoelectric materials, which are crucial in the renewable energy conversion roadmap, provide an alternative for power generation and refrigeration to solve the global energy crisis. But the low efficiency of the current materials, their usual costs, availability, and limited working temperatures, drastically constrain their application. Hence, the search for new and more efficient thermoelectric materials is one of the most dynamic objectives of this thesis. The key milestones achieved from this thesis work includes: (i) elucidating the mechanism for hole conductivity in Cu-As-Te glasses by X-ray absorption spectroscopy and quantum simulations; (ii) formulating a novel approach to achieve phonon-glass electron-crystal mechanism by crystallizing the Ge20Te77Se3 glasses by excess doping with metals or semi-metals (glass-ceramics); (iii) demonstrating the effect of processing route on the thermoelectric performance of CuPb18SbTe20 and highlighting the advantage of hybrid-flash spark plasma sintering technique, i.e., better optimization of electrical and thermal transport properties and achieving multi-scale hierarchical architectures; (iv) improving the thermoelectric performance of Pb-Sb-Te alloys (enhancement by 170%) by tuning their cation vacancies (Pb deficiencies); (v) understating the impact of doping just a group-11 coinage metal, or group-13 element on GeTe solid-state solution and recapitulating the need for pair substitution; (vi) substantially enhancing the average zT of In-Bi codoped GeTe; (vii) achieving a remarkably high and stable zT of close to 2 over a wide temperature range (600 – 773 K) by manipulating the electronic bands in Ga-Sb codoped GeTe, which has been processed by hybrid flash-spark plasma sintering, thus making it a serious candidate for energy harvesting systems.L'intérêt porté au développement de matériaux thermoélectriques est grandissant car ils permettent de créer des sources d'énergie renouvelable, dites « vertes », ce qui s'inscrit pleinement dans la stratégie de lutte contre le réchauffement climatique. A ce jour le rendement de tels systèmes reste faible, le coût de développement élevé, et les plages de températures d'utilisation sont limitées. Dans ces travaux de thèse différentes pistes sont explorées pour développer des matériaux innovants à base de chalcogènes, principalement le tellure. Les principaux résultats portent sur les points suivants. (i) Une étude par spectroscopies couplée à des calculs théoriques a permis de mieux comprendre les phénomènes de conduction dans les verres du système Cu-As-Te. (ii) La recristallisation complète de verres de formulation Ge20Te77Se3 dopés a été réalisée pour pousser à son terme la logique dite du Phonon Glass Electron Crystal (PGEC).(iii) Différents modes de synthèses ont été mis en œuvre pour suivre les propriétés thermoélectriques de matériaux de formulation CuPb18SbTe20 (frittage, SPS, flash-SPS, hybrid flash-SPS). (iv) Accroissement de 170% des performances d'alliage du système Pb-Sb-Te en générant des vacances de sites (composés non-stœchiométriques). (v) Le suivi des conséquences du dopage de GeTe par un seul élément a montré la nécessité d'un co-dopage pour simultanément accroître la conductivité électronique et le Seebeck. (vi) Le co-dopage In-Bi de GeTe a permis de créer des niveaux résonants (In) et d'accroitre la diffusion thermique (Bi). (vii) Enfin, le résultat le plus remarquable porte sur le co-dopage Ga-Sb de GeTe qui permet d'effectuer de l'ingénierie de structure de bandes. Couplé à une synthèse par hybrid flash SPS ces matériaux prometteurs permettent d'obtenir un zT 2 sur une large gamme de température (600–773 K)

    Is LiI a Potential Dopant Candidate to Enhance the Thermoelectric Performance in Sb-Free GeTe Systems? A Prelusive Study

    No full text
    As a workable substitute for toxic PbTe-based thermoelectrics, GeTe-based materials are emanating as reliable alternatives. To assess the suitability of LiI as a dopant in thermoelectric GeTe, a prelusive study of thermoelectric properties of GeTe1−xLiIx (x = 0–0.02) alloys processed by Spark Plasma Sintering (SPS) are presented in this short communication. A maximum thermoelectric figure of merit, zT ~ 1.2, was attained at 773 K for 2 mol% LiI-doped GeTe composition, thanks to the combined benefits of a noted reduction in the thermal conductivity and a marginally improved power factor. The scattering of heat carrying phonons due to the presumable formation of Li-induced “pseudo-vacancies” and nano-precipitates contributed to the conspicuous suppression of lattice thermal conductivity, and consequently boosted the zT of the Sb-free (GeTe)0.98(LiI)0.02 sample when compared to that of pristine GeTe and Sb-rich (GeTe)x(LiSbTe2)2 compounds that were reported earlier

    Thermoelectric performance of codoped (Bi, In)-GeTe and (Ag, In, Sb)-SnTe materials processed by Spark Plasma Sintering

    No full text
    International audienceGeTe and SnTe based materials are emerging as viable alternatives for toxic PbTe based thermoelectric materials. Here, a systematic study of thermoelectric properties of Bi and In codoped GeTe, and Sb, In and Ag codoped SnTe alloys processed by Spark Plasma Sintering are presented. We report that codoping of Bi and In to GeTe, (i) enhances the thermoelectric performance by the synergistic effect of nanostructuring, suppression of carrier density and creation of resonant level, which enables to simultaneously enhance the thermopower and reduce the thermal transport, and (ii) promotes the R3m → Fm-3m structural transition. These cumulative effects help Ge0.93Bi0.05In0.02Te to maintain the peak figure of merit, zT ∼ 0.85 over a wide spectrum of temperature from 550 to 773 K, making them a serious candidate for device fabrications. We also report that Sb and In codoping in SnTe enhances the thermoelectric performance, as Sn0.845Sb0.15In0.005Te exhibits an improved zT ∼ 0.8 at 823 K, when compared to pristine SnTe

    Detrimental Effects of Doping Al and Ba on the Thermoelectric Performance of GeTe

    No full text
    GeTe-based materials are emerging as viable alternatives to toxic PbTe-based thermoelectric materials. In order to evaluate the suitability of Al as dopant in thermoelectric GeTe, a systematic study of thermoelectric properties of Ge1−xAlxTe (x = 0⁻0.08) alloys processed by Spark Plasma Sintering are presented here. Being isoelectronic to Ge1−xInxTe and Ge1−xGaxTe, which were reported with improved thermoelectric performances in the past, the Ge1−xAlxTe system is particularly focused (studied both experimentally and theoretically). Our results indicate that doping of Al to GeTe causes multiple effects: (i) increase in p-type charge carrier concentration; (ii) decrease in carrier mobility; (iii) reduction in thermopower and power factor; and (iv) suppression of thermal conductivity only at room temperature and not much significant change at higher temperature. First principles calculations reveal that Al-doping increases the energy separation between the two valence bands (loss of band convergence) in GeTe. These factors contribute for Ge1−xAlxTe to exhibit a reduced thermoelectric figure of merit, unlike its In and Ga congeners. Additionally, divalent Ba-doping [Ge1−xBaxTe (x = 0⁻0.06)] is also studied

    Design and In Vitro Evaluation of Layer by Layer siRNA Nanovectors Targeting Breast Tumor Initiating Cells

    No full text
    <div><p>Efficient therapeutics and early detection has helped to increase breast cancer survival rates over the years. However, the recurrence of breast cancer remains to be a problem and this may be due to the presence of a small population of cells, called tumor initiating cells (TICs). Breast TICs are resistant to drugs, difficult to detect, and exhibit high self-renewal capabilities. In this study, layer by layer (LBL) small interfering RNA (siRNA) nanovectors (SNVs) were designed to target breast TICs. SNVs were fabricated using alternating layers of poly-L-lysine and siRNA molecules on gold (Au) nanoparticle (NP) surfaces. The stability, cell uptake, and release profile for SNVs were examined. In addition, SNVs reduced TIC-related STAT3 expression levels, CD44<sup>+</sup>/CD24<sup>−</sup>/EpCAM<sup>+</sup> surface marker levels and the number of mammospheres formed compared to the standard transfection agent. The data from this study show, for the first time, that SNVs in LBL assembly effectively delivers STAT3 siRNA and inhibit the growth of breast TICs <i>in vitro</i>.</p></div
    corecore