11,272 research outputs found

    Nilpotent Symmetries of a 4D Model of the Hodge Theory: Augmented (Anti-)Chiral Superfield Formalism

    Full text link
    We derive the continuous nilpotent symmetries of the four (3 + 1)-dimensional (4D) model of the Hodge theory (i.e. 4D Abelian 2-form gauge theory) by exploiting the beauty and strength of the symmetry invariant restrictions on the (anti-)chiral superfields. The above off-shell nilpotent symmetries are the Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST and (anti-)co-BRST transformations which turn up beautifully due to the (anti-)BRST and (anti-)co-BRST invariant restrictions on the (anti-)chiral superfields that are defined on the (4, 1)-dimensional (anti-)chiral super-submanifolds of the general (4, 2)-dimensional supermanifold on which our ordinary 4D theory is generalized. The latter supermanifold is characterized by the superspace coordinates ZM=(xμ,θ,θˉ)Z^M = (x^\mu,\, \theta,\, \bar\theta) where xμ(μ=0,1,2,3)x^\mu\, (\mu = 0, 1, 2, 3 ) are the bosonic coordinates and a pair of Grassmannian variables θ\theta and θˉ\bar\theta are fermionic in nature as they obey the standard relationships: θ2=θˉ2=0,θθˉ+θˉθ=0\theta^2 = {\bar\theta}^2 = 0,\, \theta\,\bar\theta + \bar\theta\,\theta = 0). The derivation of the {\it proper} (anti-)co-BRST symmetries and proof of the absolute anticommutativity property of the conserved (anti-)BRST and (anti-) co-BRST charges are novel results of our present investigation (where only the (anti-)chiral superfields and their super-expansions have been taken into account).Comment: LaTeX file, 28 pages, journal reference is give

    Neural network-based retrieval from software reuse repositories

    Get PDF
    A significant hurdle confronts the software reuser attempting to select candidate components from a software repository - discriminating between those components without resorting to inspection of the implementation(s). We outline an approach to this problem based upon neural networks which avoids requiring the repository administrators to define a conceptual closeness graph for the classification vocabulary

    Engineering Quantum Jump Superoperators for Single Photon Detectors

    Full text link
    We study the back-action of a single photon detector on the electromagnetic field upon a photodetection by considering a microscopic model in which the detector is constituted of a sensor and an amplification mechanism. Using the quantum trajectories approach we determine the Quantum Jump Superoperator (QJS) that describes the action of the detector on the field state immediately after the photocount. The resulting QJS consists of two parts: the bright counts term, representing the real photoabsorptions, and the dark counts term, representing the amplification of intrinsic excitations inside the detector. First we compare our results for the counting rates to experimental data, showing a good agreement. Then we point out that by modifying the field frequency one can engineer the form of QJS, obtaining the QJS's proposed previously in an ad hoc manner

    Smooth quantum-classical transition in photon subtraction and addition processes

    Full text link
    Recently Parigi et al. [Science 317, 1890 (2007)] implemented experimentally the photon subtraction and addition processes from/to a light field in a conditional way, when the required operations were produced successfully only upon the positive outcome of a separate measurement. It was verified that for a low intensity beam (quantum regime) the bosonic annihilation operator does indeed describe a single photon subtraction, while the creation operator describes a photon addition. Nonetheless, the exact formal expressions for these operations do not always reduce to these simple identifications, and in this connection here we deduce the general superoperators for multiple photons subtraction and addition processes and analyze the statistics of the resulting states for classical field states having an arbitrary intensity. We obtain closed analytical expressions and verify that for classical fields with high intensity (classical regime) the operators that describe photon subtraction and addition processes deviate significantly from simply annihilation and creation operators. Complementarily, we analyze in details such a smooth quantum-classical transition as function of beam intensity for both processes.Comment: 7 pages, 5 figures. To appear in Phys. Rev.

    Bayesian Optimisation for Safe Navigation under Localisation Uncertainty

    Full text link
    In outdoor environments, mobile robots are required to navigate through terrain with varying characteristics, some of which might significantly affect the integrity of the platform. Ideally, the robot should be able to identify areas that are safe for navigation based on its own percepts about the environment while avoiding damage to itself. Bayesian optimisation (BO) has been successfully applied to the task of learning a model of terrain traversability while guiding the robot through more traversable areas. An issue, however, is that localisation uncertainty can end up guiding the robot to unsafe areas and distort the model being learnt. In this paper, we address this problem and present a novel method that allows BO to consider localisation uncertainty by applying a Gaussian process model for uncertain inputs as a prior. We evaluate the proposed method in simulation and in experiments with a real robot navigating over rough terrain and compare it against standard BO methods.Comment: To appear in the proceedings of the 18th International Symposium on Robotics Research (ISRR 2017

    Low-overhead hard real-time aware interconnect network router

    Get PDF
    The increasing complexity of embedded systems is accelerating the use of multicore processors in these systems. This trend gives rise to new problems such as the sharing of on-chip network resources among hard real-time and normal best effort data traffic. We propose a network-on-chip router that provides predictable and deterministic communication latency for hard real-time data traffic while maintaining high concurrency and throughput for best-effort/general-purpose traffic with minimal hardware overhead. The proposed router requires less area than non-interfering networks, and provides better Quality of Service (QoS) in terms of predictability and determinism to hard real-time traffic than priority-based routers. We present a deadlock-free algorithm for decoupled routing of the two types of traffic. We compare the area and power estimates of three different router architectures with various QoS schemes using the IBM 45-nm SOI CMOS technology cell library. Performance evaluations are done using three realistic benchmark applications: a hybrid electric vehicle application, a utility grid connected photovoltaic converter system, and a variable speed induction motor drive application
    corecore