303 research outputs found

    The viscosity radius in dilute polymer solutions: Universal behaviour from DNA rheology and Brownian dynamics simulations

    Full text link
    The swelling of the viscosity radius, αη\alpha_\eta, and the universal viscosity ratio, UηRU_{\eta R}, have been determined experimentally for linear DNA molecules in dilute solutions with excess salt, and numerically by Brownian dynamics simulations, as a function of the solvent quality. In the latter instance, asymptotic parameter free predictions have been obtained by extrapolating simulation data for finite chains to the long chain limit. Experiments and simulations show a universal crossover for αη\alpha_\eta and UηRU_{\eta R} from θ\theta to good solvents in line with earlier observations on synthetic polymer-solvent systems. The significant difference between the swelling of the dynamic viscosity radius from the observed swelling of the static radius of gyration, is shown to arise from the presence of hydrodynamic interactions in the non-draining limit. Simulated values of αη\alpha_\eta and UηRU_{\eta R} are in good agreement with experimental measurements in synthetic polymer solutions reported previously, and with the measurements in linear DNA solutions reported here.Comment: 19 pages, 14 figures, two column, Supporting Information added, to appear in Macromolecule

    Activity report analysis with automatic single or multispan answer extraction

    Full text link
    In the era of loT (Internet of Things) we are surrounded by a plethora of Al enabled devices that can transcribe images, video, audio, and sensors signals into text descriptions. When such transcriptions are captured in activity reports for monitoring, life logging and anomaly detection applications, a user would typically request a summary or ask targeted questions about certain sections of the report they are interested in. Depending on the context and the type of question asked, a question answering (QA) system would need to automatically determine whether the answer covers single-span or multi-span text components. Currently available QA datasets primarily focus on single span responses only (such as SQuAD[4]) or contain a low proportion of examples with multiple span answers (such as DROP[3]). To investigate automatic selection of single/multi-span answers in the use case described, we created a new smart home environment dataset comprised of questions paired with single-span or multi-span answers depending on the question and context queried. In addition, we propose a RoBERTa[6]-based multiple span extraction question answering (MSEQA) model returning the appropriate answer span for a given question. Our experiments show that the proposed model outperforms state-of-the-art QA models on our dataset while providing comparable performance on published individual single/multi-span task datasets

    Shear thinning in dilute and semidilute solutions of polystyrene and DNA

    Full text link
    The viscosity of dilute and semidilute unentangled DNA solutions, in steady simple shear flow, has been measured across a range of temperatures and concentrations. For polystyrene solutions, measurements of viscosity have been carried out in the semidilute unentangled regime, while results of prior experimental measurements in the dilute regime have been used for the purpose of data analysis, and for comparison with the behaviour of DNA solutions. Interpretation of the shear rate dependence of viscosity in terms of suitably defined non-dimensional variables, is shown to lead to master plots, independent of temperature and concentration, in each of the two concentration regimes. In the case of semidilute unentangled solutions, defining the Weissenberg number in terms of a concentration dependent large scale relaxation time is found not to lead to data collapse across different concentrations. On the other hand, the use of an alternative relaxation time, with the concentration dependence of a single correlation blob, suggests the existence of universal shear thinning behaviour at large shear rates.Comment: 24 pages, 13 figures, supplementary material (see ancillary directory), to appear in Journal of Rheolog

    Transcriptome analysis and identification of leaf, tuberous root and fibrous root tissue-specific high temperature stress-responsive genes in sweet potato

    Get PDF
    Sweet Potato is an important food crop, and its production is affected by environmental stresses, including high temperature. The gene expression patterns and molecular responses in different tissues of sweet potato under high temperature stress were studied using microarray data sets. Analysis revealed that modulation in the expression of key genes and pathways associated with various proteins including enzymes under high temperature stress in leaf, fibrous root and storage root tissues. Tissue-specific responses, with both common and unique cellular responses were observed among the tissues. Pathway analysis revealed the differential regulation of genes involved in DNA replication, metabolism, transport, signaling, and stress response during high temperature stress. Six genes viz., DnaJ-domain protein (IpDnaJ), nuclear protein (IpELF5), heat shock protein 90.1 (IpHsp90.1), ABC   transporter   (IpABC)   hydrolase (IpNUDX1)   and alternative oxidase 1a (IpAO1a), were up-regulated in the leaf, fibrous root and tuberous root tissues. These six genes might play an important role in imparting high temperature stress tolerance in the leaf, fibrous root and tuberous root tissues of sweet potato. The information generated provides valuable insights on leaf, tuberous root and fibrous root tissue-specific high temperature stress-responsive genes in sweet potato. These datasets will be helpful in selecting candidate genes and pathways for further functional and genomic analyses, facilitating the genetic improvement of sweet potato with enhanced stress tolerance

    Direct maximum parsimony phylogeny reconstruction from genotype data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maximum parsimony phylogenetic tree reconstruction from genetic variation data is a fundamental problem in computational genetics with many practical applications in population genetics, whole genome analysis, and the search for genetic predictors of disease. Efficient methods are available for reconstruction of maximum parsimony trees from haplotype data, but such data are difficult to determine directly for autosomal DNA. Data more commonly is available in the form of genotypes, which consist of conflated combinations of pairs of haplotypes from homologous chromosomes. Currently, there are no general algorithms for the direct reconstruction of maximum parsimony phylogenies from genotype data. Hence phylogenetic applications for autosomal data must therefore rely on other methods for first computationally inferring haplotypes from genotypes.</p> <p>Results</p> <p>In this work, we develop the first practical method for computing maximum parsimony phylogenies directly from genotype data. We show that the standard practice of first inferring haplotypes from genotypes and then reconstructing a phylogeny on the haplotypes often substantially overestimates phylogeny size. As an immediate application, our method can be used to determine the minimum number of mutations required to explain a given set of observed genotypes.</p> <p>Conclusion</p> <p>Phylogeny reconstruction directly from unphased data is computationally feasible for moderate-sized problem instances and can lead to substantially more accurate tree size inferences than the standard practice of treating phasing and phylogeny construction as two separate analysis stages. The difference between the approaches is particularly important for downstream applications that require a lower-bound on the number of mutations that the genetic region has undergone.</p
    corecore