374 research outputs found

    Physical conditions in broad and associated narrow absorption-line systems toward APM 08279+5255

    Get PDF
    Results of a careful analysis of the absorption systems with zabs = zem seen toward the bright, z_em ~ 3.91, gravitationally lensed quasar APM 08279+5255 are presented. Two of the narrow-line systems, at z_abs = 3.8931 and z_abs = 3.9135, show absorptions from singly ionized species with weak or no NV and O V absorptions at the same redshift. Absorption due to fine structure transitions of C II and Si II (excitation energies corresponding to, respectively, 156μ\mum and 34μ\mum) are detected at z_abs = 3.8931. Excitation by IR radiation is favored as the column density ratios are consistent with the shape of APM 08279+5255 IR spectrum. The low-ionization state of the system favors a picture where the cloud is closer to the IR source than to the UV source, supporting the idea that the extension of the IR source is larger than ~ 200 pc. The absence of fine structure lines at z_abs = 3.9135 suggests that the gas responsible for this system is farther away from the IR source. Abundances are ~ 0.01 and 1ZZ_{\odot} at z_abs = 3.913 and 3.8931 and aluminum could be over-abundant with respect to silicon and carbon by at least a factor of two and five. All this suggests that whereas the \zabs = 3.8931 system is probably located within 200 pc from the QSO and ejected at a velocity larger than 1000 kms^{-1}, the \zabs = 3.9135 system is farther away and part of the host-galaxy. (abridged)Comment: 15 pages with 15 figures (psfiles), To appear in A&

    The VLT-UVES survey for molecular hydrogen in high-redshift damped Lyman-alpha systems

    Get PDF
    We have searched for molecular hydrogen in damped Lyman-alpha (DLA) and sub-DLA systems at z>1.8 using UVES at the VLT. Out of the 33 systems in our sample, 8 have firm and 2 have tentative detections of associated H2 absorption lines. Considering that 3 detections were already known from past searches, H2 is detected in 13 to 20 percent of the newly-surveyed systems. We report new detections of molecular hydrogen at z=2.087 and 2.595 toward, respectively, Q 1444+014 and Q 0405-443, and also reanalyse the system at z=3.025 toward Q 0347-383. We find that there is a correlation between metallicity and depletion factor in both our sample and also the global population of DLA systems (60 systems in total). The DLA and sub-DLA systems where H2 is detected are usually amongst those having the highest metallicities and the largest depletion factors. Moreover, the individual components where H2 is detected have depletion factors systematically larger than other components in the profiles. In two different systems, one of the H2-detected components even has [Zn/Fe]>=1.4. These are the largest depletion factors ever seen in DLA systems. All this clearly demonstrates the presence of dust in a large fraction of the DLA systems. The mean H2 molecular fraction is generally small in DLA systems and similar to what is observed in the Magellanic Clouds. From 58 to 75 percent of the DLA systems have log f<-6. This can be explained if the formation rate of H2 onto dust grains is reduced in those systems, probably because the gas is warm (T>1000 K) and/or the ionizing flux is enhanced relative to what is observed in our Galaxy.Comment: 21 pages, 16 figures, MNRA

    Constraining the Variation in Fine-Structure Constant Using SDSS DR8 QSO Spectra

    Full text link
    We report a robust constrain on the possible variation of fine-structure constant, alpha = e^2/(hbar*c), obtained using O III 4959,5007, nebular emission lines from QSOs. We find Delta-alpha/alpha=-(2.1 +/- 1.6) x 10^(-5) based on a well selected sample of 2347 QSOs from Sloan Digital Sky Survey Data Release 8 with 0.02 < z < 0.74. Our result is consistent with a non-varying alpha at a level of 2 x 10^(-5) over approximately 7 Gyr. This is the largest sample of extragalactic objects yet used to constrain the variation of alpha. While this constraint is not as stringent as those determined using many-multiplet method it is free from various systematic effects. A factor of ~ 4 improvement in Delta-alpha/alpha achieved here compared to the previous study (Bahcall et al. 2004) is just consistent with what is expected based on a factor of 14 times bigger sample used here. This suggests that errors are mainly dominated by the statistical uncertainty. We also find the ratio of transition probabilities corresponding to the O III 5007 A and 4959 A lines to be 2.933+/-0.002, in good agreement with the National Institute of Standards and Technology measurements.Comment: 5 pages, 3 figures; Accepted for publication in MNRAS Lette

    The elusive HI-> H2 transition in high-z damped Lyman-alpha systems

    Full text link
    We study the H2 molecular content in high redshift damped Lyman-alpha systems (DLAs) as a function of the HI column density. We find a significant increase of the H2 molecular content around log N(HI) (cm^-2)~21.5-22, a regime unprobed until now in intervening DLAs, beyond which the majority of systems have log N(H2) > 17. This is in contrast with lines of sight towards nearby stars, where such H2 column densities are always detected as soon as log N(HI)>20.7. This can qualitatively be explained by the lower average metallicity and possibly higher surrounding UV radiation in DLAs. However, unlike in the Milky Way, the overall molecular fractions remain modest, showing that even at a large N(HI) only a small fraction of overall HI is actually associated with the self-shielded H2 gas. Damped Lyman-alpha systems with very high-N(HI) probably arise along quasar lines of sight passing closer to the centre of the host galaxy where the gas pressure is higher. We show that the colour changes induced on the background quasar by continuum (dust) and line absorption (HI Lyman and H2 Lyman & Werner bands) in DLAs with log N(HI)~22 and metallicity ~1/10 solar is significant, but not responsible for the long-discussed lack of such systems in optically selected samples. Instead, these systems are likely to be found towards intrinsically fainter quasars that dominate the quasar luminosity function. Colour biasing should in turn be severe at higher metallicities.Comment: accepted for publication in A&A letter

    Semi analytic approach to understanding the distribution of neutral hydrogen in the universe

    Get PDF
    Analytic derivations of the correlation function and the column density distribution for neutral hydrogen in the IGM are presented, assuming that the non-linear baryonic mass density distribution in the IGM is lognormal. This ansatz was used earlier by Bi & Davidsen (1997) to perform 1D simulations of lines-of-sight and analyse the properties of absorption systems. Our approach is completely analytic, which allows us to explore a wide region of the parameter space for our model. The analytic results have been compared with observations, whenever possible. Two kinds of correlation functions are defined: along the line-of-sight (LOS) and across the transverse direction. We find that the effects on the LOS correlation due to change in cosmology and the slope of the equation of state of the IGM, \gamma are of the same order, which means that we cannot constrain both the parameters simultaneously. However, it is possible to constrain \gamma and its evolution using the observed LOS correlation function at different epochs, provided one knows the background cosmology. We suggest that the constraints on the evolution of \gamma obtained using the LOS correlation can be used as an independent tool to probe the reionisation history of the universe. From the transverse correlation function, we find that the excess probability, over random, of finding two neutral hydrogen overdense regions separated by an angle \theta, is always less than 1 per cent for redshifts greater than 2. Our models also reproduce the observed column density distribution for neutral hydrogen and the shape of the distribution depends on \gamma. Our calculations suggest that one can rule out \gamma > 1.6 for z \simeq 2.31 using the column density distribution. However, one cannot rule higher values of \gamma at higher redshifts.Comment: 16 pages, 8 figures. Accepted for publication in MNRAS. Revised following referee's comment
    corecore