77 research outputs found

    Approximating n-player behavioural strategy nash equilibria using coevolution

    Get PDF
    Coevolutionary algorithms are plagued with a set of problems related to intransitivity that make it questionable what the end product of a coevolutionary run can achieve. With the introduction of solution concepts into coevolution, part of the issue was alleviated, however efficiently representing and achieving game theoretic solution concepts is still not a trivial task. In this paper we propose a coevolutionary algorithm that approximates behavioural strategy Nash equilibria in n-player zero sum games, by exploiting the minimax solution concept. In order to support our case we provide a set of experiments in both games of known and unknown equilibria. In the case of known equilibria, we can confirm our algorithm converges to the known solution, while in the case of unknown equilibria we can see a steady progress towards Nash. Copyright 2011 ACM

    Fast Approximate Max-n Monte Carlo Tree Search for Ms Pac-Man

    Get PDF
    We present an application of Monte Carlo tree search (MCTS) for the game of Ms Pac-Man. Contrary to most applications of MCTS to date, Ms Pac-Man requires almost real-time decision making and does not have a natural end state. We approached the problem by performing Monte Carlo tree searches on a five player maxn tree representation of the game with limited tree search depth. We performed a number of experiments using both the MCTS game agents (for pacman and ghosts) and agents used in previous work (for ghosts). Performance-wise, our approach gets excellent scores, outperforming previous non-MCTS opponent approaches to the game by up to two orders of magnitude. © 2011 IEEE

    On monte carlo tree search and reinforcement learning

    Get PDF
    Fuelled by successes in Computer Go, Monte Carlo tree search (MCTS) has achieved widespread adoption within the games community. Its links to traditional reinforcement learning (RL) methods have been outlined in the past; however, the use of RL techniques within tree search has not been thoroughly studied yet. In this paper we re-examine in depth this close relation between the two fields; our goal is to improve the cross-awareness between the two communities. We show that a straightforward adaptation of RL semantics within tree search can lead to a wealth of new algorithms, for which the traditional MCTS is only one of the variants. We confirm that planning methods inspired by RL in conjunction with online search demonstrate encouraging results on several classic board games and in arcade video game competitions, where our algorithm recently ranked first. Our study promotes a unified view of learning, planning, and search

    Knowledge-based fast evolutionary MCTS for general video game playing

    Get PDF
    General Video Game Playing is a game AI domain in which the usage of game-dependent domain knowledge is very limited or even non existent. This imposes obvious difficulties when seeking to create agents able to play sets of different games. Taken more broadly, this issue can be used as an introduction to the field of General Artificial Intelligence. This paper explores the performance of a vanilla Monte Carlo Tree Search algorithm, and analyzes the main difficulties encountered when tackling this kind of scenarios. Modifications are proposed to overcome these issues, strengthening the algorithm's ability to gather and discover knowledge, and taking advantage of past experiences. Results show that the performance of the algorithm is significantly improved, although there remain unresolved problems that require further research. The framework employed in this research is publicly available and will be used in the General Video Game Playing competition at the IEEE Conference on Computational Intelligence and Games in 2014

    Predicting Dominance Rankings for Score-Based Games

    Get PDF
    Game competitions may involve different player roles and be score-based rather than win/loss based. This raises the issue of how best to draw opponents for matches in ongoing competitions, and how best to rank the players in each role. An example is the Ms Pac-Man versus Ghosts Competition which requires competitors to develop software controllers to take charge of the game's protagonists: participants may develop software controllers for either or both Ms Pac-Man and the team of four ghosts. In this paper, we compare two ranking schemes for win-loss games, Bayes Elo and Glicko. We convert the game into one of win-loss ("dominance") by matching controllers of identical type against the same opponent in a series of pair-wise comparisons. This implicitly creates a "solution concept" as to what a constitutes a good player. We analyze how many games are needed under two popular ranking algorithms, Glicko and Bayes Elo, before one can infer the strength of the players, according to our proposed solution concept, without performing an exhaustive evaluation. We show that Glicko should be the method of choice for online score-based game competitions

    Multiobjective Monte Carlo Tree Search for Real-Time Games

    Get PDF
    Multiobjective optimization has been traditionally a matter of study in domains like engineering or finance, with little impact on games research. However, action-decision based on multiobjective evaluation may be beneficial in order to obtain a high quality level of play. This paper presents a multiobjective Monte Carlo tree search algorithm for planning and control in real-time game domains, those where the time budget to decide the next move to make is close to 40 ms. A comparison is made between the proposed algorithm, a single-objective version of Monte Carlo tree search and a rolling horizon implementation of nondominated sorting evolutionary algorithm II (NSGA-II). Two different benchmarks are employed, deep sea treasure (DST) and the multiobjective physical traveling salesman problem (MO-PTSP). Using the same heuristics on each game, the analysis is focused on how well the algorithms explore the search space. Results show that the algorithm proposed outperforms NSGA-II. Additionally, it is also shown that the algorithm is able to converge to different optimal solutions or the optimal Pareto front (if achieved during search)

    Viewpoint: Artificial Intelligence and Labour

    Full text link
    The welfare of modern societies has been intrinsically linked to wage labour. With some exceptions, the modern human has to sell her labour-power to be able reproduce biologically and socially. Thus, a lingering fear of technological unemployment features predominately as a theme among Artificial Intelligence researchers. In this short paper we show that, if past trends are anything to go by, this fear is irrational. On the contrary, we argue that the main problem humanity will be facing is the normalisation of extremely long working hours

    Rolling horizon methods for games with continuous states and actions

    Get PDF
    It is often the case that games have continuous dynamics and allow for continuous actions, possibly with with some added noise. For larger games with complicated dynamics, having agents learn offline behaviours in such a setting is a daunting task. On the other hand, provided a generative model is available, one might try to spread the cost of search/learning in a rolling horizon fashion (e.g. as in Monte Carlo Tree Search). In this paper we compare T-HOLOP (Truncated Hierarchical Open Loop Planning), an open loop planning algorithm at least partially inspired by MCTS, with a version of evolutionary planning that uses CMA-ES (which we call EVO-P) in two planning benchmark problems (Inverted Pendulum and the Double Integrator) and in Lunar Lander, a classic arcade game. We show that EVO-P outperforms T-HOLOP in the classic benchmarks, while T-HOLOP is unable to find a solution using the same heuristics. We conclude that off-the-shelf evolutionary algorithms can be used successfully in a rolling horizon setting, and that a different type of heuristics might be needed under different optimisation algorithms

    Automated Map Generation for the Physical Traveling Salesman Problem

    Get PDF
    This paper presents a method for generating complex problems that allow multiple nonobvious solutions for the physical traveling salesman problem (PTSP). PTSP is a single-player game adaptation of the classical traveling salesman problem that makes use of a simple physics model: the player has to visit a number of waypoints as quickly as possible by navigating a ship in real time across an obstacle-filled 2-D map. The difficulty of this game depends on the distribution of waypoints and obstacles across the 2-D plane. Due to the physics of the game, the shortest route is not necessarily the fastest, as the ship's momentum makes it difficult to turn sharply at high speed. This paper proposes an evolutionary approach to obtaining maps where the optimal solution is not immediately obvious. In particular, any optimal route for these maps should differ distinctively from: 1) the optimal distance-based TSP route and 2) the route that corresponds to always approaching the nearest waypoint first. To achieve this, the evolutionary algorithm covariance matrix adaptation-evolutionary strategy (CMA-ES) is employed, where maps, indirectly represented as vectors of real numbers, are evolved to differentiate maximally between a game-playing agent that follows two or more different routes. The results presented in this paper show that CMA-ES is able to generate maps that fulfil the desired conditions
    corecore