194 research outputs found

    The Effects of radial inflow of gas and galactic fountains on the chemical evolution of M31

    Full text link
    Galactic fountains and radial gas flows are very important ingredients in modeling the chemical evolution of galactic disks. Our aim here is to study the effects of galactic fountains and radial gas flows in the chemical evolution of the disk of M31. We adopt a ballistic method to study the effects of galactic fountains on the chemical enrichment of the M31 disk. We find that the landing coordinate for the fountains in M31 is no more than 1 kpc from the starting point, thus producing negligible effect on the chemical evolution of the disk. We find that the delay time in the enrichment process due to fountains is no longer than 100 Myr and this timescale also produces negligible effects on the results. Then, we compute the chemical evolution of the M31 disk with radial gas flows produced by the infall of extragalactic material and fountains. We find that a moderate inside-out formation of the disk coupled with radial flows of variable speed can very well reproduce the observed gradient. We discuss also the effects of other parameters such a threshold in the gas density for star formation and an efficiency of star formation varying with the galactic radius. We conclude that the most important physical processes in creating disk gradients are the inside-out formation and the radial gas flows. More data on abundance gradients both locally and at high redshift are necessary to confirm this conclusion.Comment: Accepted by A&

    ISM Simulations: An Overview of Models

    Get PDF
    Until recently the dynamical evolution of the interstellar medium (ISM) was simulated using collisional ionization equilibrium (CIE) conditions. However, the ISM is a dynamical system, in which the plasma is naturally driven out of equilibrium due to atomic and dynamic processes operating on different timescales. A step forward in the field comprises a multi-fluid approach taking into account the joint thermal and dynamical evolutions of the ISM gas.Comment: Overview paper (3 pages) presented by M. Avillez at the Special Session "Modern views of the interstellar medium", XXVIIIth IAU General Assembly, August 27-30, 2012, Beijing. Chin

    Competitive nucleation in metastable systems

    Full text link
    Metastability is observed when a physical system is close to a first order phase transition. In this paper the metastable behavior of a two state reversible probabilistic cellular automaton with self-interaction is discussed. Depending on the self-interaction, competing metastable states arise and a behavior very similar to that of the three state Blume-Capel spin model is found

    Basic Ideas to Approach Metastability in Probabilistic Cellular Automata

    Get PDF
    Cellular Automata are discrete--time dynamical systems on a spatially extended discrete space which provide paradigmatic examples of nonlinear phenomena. Their stochastic generalizations, i.e., Probabilistic Cellular Automata, are discrete time Markov chains on lattice with finite single--cell states whose distinguishing feature is the \textit{parallel} character of the updating rule. We review some of the results obtained about the metastable behavior of Probabilistic Cellular Automata and we try to point out difficulties and peculiarities with respect to standard Statistical Mechanics Lattice models.Comment: arXiv admin note: text overlap with arXiv:1307.823

    Chemical evolution of the bulge of M31: predictions about abundance ratios

    Full text link
    We aim at reproducing the chemical evolution of the bulge of M31 by means of a detailed chemical evolution model, including radial gas flows coming from the disk. We study the impact of the initial mass function, the star formation rate and the time scale for bulge formation on the metallicity distribution function of stars. We compute several models of chemical evolution using the metallicity distribution of dwarf stars as an observational constraint for the bulge of M31. Then, by means of the model which best reproduces the metallicity distribution function, we predict the [X/Fe] vs. [Fe/H] relations for several chemical elements (O, Mg, Si, Ca, C, N). Our best model for the bulge of M31 is obtained by means of a robust statistical method and assumes a Salpeter initial mass function, a Schmidt-Kennicutt law for star formation with an exponent k=1.5, an efficiency of star formation of ∼15±0.27 Gyr−1\sim 15\pm 0.27\, Gyr^{-1}, and an infall timescale of ∼0.10±0.03\sim 0.10\pm 0.03Gyr. Our results suggest that the bulge of M31 formed very quickly by means of an intense star formation rate and an initial mass function flatter than in the solar vicinity but similar to that inferred for the Milky Way bulge. The [α\alpha/Fe] ratios in the stars of the bulge of M31 should be high for most of the [Fe/H] range, as is observed in the Milky Way bulge. These predictions await future data to be proven.Comment: Accepted for publication by MNRA

    Competitive nucleation in reversible Probabilistic Cellular Automata

    Get PDF
    The problem of competitive nucleation in the framework of Probabilistic Cellular Automata is studied from the dynamical point of view. The dependence of the metastability scenario on the self--interaction is discussed. An intermediate metastable phase, made of two flip--flopping chessboard configurations, shows up depending on the ratio between the magnetic field and the self--interaction. A behavior similar to the one of the stochastic Blume--Capel model with Glauber dynamics is found

    Homogeneous and heterogeneous nucleation in the three--state Blume--Capel model

    Full text link
    The metastable behavior of the stochastic Blume--Capel model with Glauber dynamics is studied when zero-boundary conditions are considered. The presence of zero-boundary conditions changes drastically the metastability scenarios of the model: \emph{heterogeneous nucleation} will be proven in the region of the parameter space where the chemical potential is larger than the external magnetic field.Comment: 25 pages, 18 figure

    Phase transitions in random mixtures of elementary cellular automata

    Get PDF
    We investigate one-dimensional probabilistic cellular automata, called Diploid Elementary Cellular Automata (DECA), obtained as random mixtures of two different elementary cellular automata rules. All the cells are updated synchronously and the probability for one cell to be 0 or 1 at time t depends only on the value of the same cell and that of its neighbors at time t−1. These very simple models show a very rich behavior strongly depending on the choice of the two elementary cellular automata that are randomly mixed together and on the parameter which governs probabilistically the mixture. In particular, we study the existence of phase transition for the whole set of possible DECA obtained by mixing the null rule which associates 0 to any possible local configuration, with any of the other 255 elementary rules. We approach the problem analytically via a mean field approximation and via the use of a rigorous approach based on the application of the Dobrushin criterion. The main feature of our approach is the possibility to describe the behavior of the whole set of considered DECA without exploiting the local properties of the individual models. The results that we find are consistent with numerical studies already published in the scientific literature and also with some rigorous results proven for some specific models
    • …
    corecore